УДК579.842.1/.2:[616.6+616.97]-022:612.017-008.64 Н.С. Мотавкина, Е.Н. Бушуева

БИОЦЕНОЗ УСЛОВНО-ПАТОГЕННЫХ БАКТЕРИЙ И ВОЗБУДИТЕЛЕЙ УРОГЕНИТАЛЬНЫХ ИНФЕКЦИЙ, ПЕРЕДАЮЩИХСЯ ПОЛОВЫМ ПУТЕМ, В ГЕНЕЗЕ ГУМОРАЛЬНЫХ ИММУНОДЕФИЦИТОВ

Владивостокский государственный медицинский университет

иммунодефициты.

При широко распространенных урогенитальных инфекциях, передающихся половым путем, большую роль играет сложное сочетание специфических возбудителей болезни и сопутствующей условно-патогенной микрофлоры, в частности энтеробактерий семейства Enterobacteriaceae. Последние нередко выделяются и в чистой культуре без присутствия специфических видов. Такие временные биоценозы, очевидно, не проходят бесследно для инфицированного организма, так как в силу их взаимодействия возможны крайне неблагоприятные осложнения, в том числе возникновение одно- и многокомпонентных иммунодефицитов, открывающих путь другим инфекциям.

Так, рядом исследователей установлена способность условно-патогенных бактерий оказывать ингибирующе-разрушающее воздействие на разные факторы естественной резистентности человека. В их числе оказались такие важные защитные механизмы, как IgA и S-IgA, обеспечивающие местный иммунитет, комплемент и его фракции, лизоцим, интерферон и многие другие [1—6]. Причем эти факторы, испытывая разнообразные воздействия, могут либо резко усиливаться, либо ослабляться вплоть до полного исчезновения. В то же время это может привести к повышенной восприимчивости человека к возбудителям инфекции, изменению клинического течения болезни, формированию иммунодефицитов, открывающих перспективы не только для утяжеления и хронизации данной патологии, но и для возникновения целого ряда других заболеваний. Тем не менее подобные важные изменения при межмикробном биоценозе в процессе развития урогенитальных инфекций не отражены в научной литературе.

Цель настоящего исследования заключалась в выяснении наличия и состояния основных факторов персистенции у условно-патогенных энтеробактерий при моно- и микст-формах урогенитальных инфекций, передающихся половым путем, с оценкой их патогенетической роли в развитии патологического процесса.

Материалом послужили 296 штаммов энтеробактерий, принадлежащих к 8 родам семейства Ептеrobacteriaceae. Основную массу из них (170 культур) представлял род Escherichia, остальные были изолированы в меньшем количестве. Всего было выделено 15 видов энтеробактерий. Все штаммы принадлежали больным урогенитальными инфекциями с моно- и микст-формами заболевания. Помимо них были изучены персистентные характеристики у 44 штаммов энтеробактерий, выделенных от здоровых людей (контроль). В числе факторов персистенции у бактериальных изолятов были изучены антилизоцимная, антиинтерфероновая и антикомплементарная активность, которые направлены на снижение гуморальных факторов защиты макроорганизма [2, 3, 5, 6].

Из 296 штаммов изученных энтеробактерий раз-Ключевые слова: биоценозы, персистенция, патогенез, ными факторами персистенции обладали 242. Из них 134 культуры были выделены от больных урогенитальными инфекциями со специфической патологией, а 108 — при моноформе инфекции, вызванной энтеробактериями.

> В общий массив изолятов с персистирующей активностью вошли представители 8 родов: Escherichia (52,6%), Klebsiella и Serratia (по 11,2%), Citrobacter (9.5%), Klayvera (8.7%), Proteus (4.1%), Enterobacter (2,9%) и Pantoae (0,4%). Лидирующее положение среди них занимали эшерихии, а наименьшую долю составили клебсиеллы, серрация и другие роды.

> Наибольший интерес представлял дифференцированный анализ и обеспеченность факторами персистенции штаммов, пребывающих в организме больных в монокультуре и в сочетании со специфическими возбудителями при микст-формах данной патологии. Наличие и частота разных факторов персистентной активности у контрольных штаммов, выделенных от здоровых людей, оказались самыми низкими. Они были намного меньше таковых у штаммов, выделенных от больных моноформами урогенитальных инфекций, и значительно ниже показателей клинических штаммов микст-инфекций, отличаясь от них по большинству признаков на статистически значимую величину. Это касается и частных, и суммарных данных, которые достоверно отличались друг от друга. Особенно высоки были эти различия при сочетаниях различных факторов персистенции (табл. 1).

> В то же время у контрольных штаммов энтеробактерий одиночные факторы персистенции встречались довольно часто. Так, антилизоцимная активность была зарегистрирована у 54,6±7,6%, противоинтерфероновая — у $40.9\pm7.4\%$ культур, но почти вдвое реже (27,3±6,7%) выявлялась антикомплементарная активность. Это говорит о выраженной потенциальной способности условно-патогенных энтеробактерий к проявлению персистентной активности, особенно целенаправленной. Поэтому, вероятно, частота встречаемости сочетаний разных факторов здесь оказалась несравнимо ниже.

> У клинических штаммов обеих анализируемых групп энтеробактерий — изолятов от больных с монои микст-формами урогенитальных инфекций — обнаружены более высокие показатели персистенции. Особо часто факторы персистенции имели штаммы

Таблица 1 Различия в персистентной активности штаммов энтеробактерий при моно- и микст-формах урогенитальных инфекций

Изоляты	Число культур	Частота обнаружения факторов персистенции $^{\scriptscriptstyle 1}$ и их сочетаний, $\%$								
		АЛА	AKA	АИА	АЛА+АИА	АЛА+АКА	АКА+АИА	АЛА+АКА+АИА		
	108	$63,9\pm10,3^{2,3}$	84,3±3,5 ^{2,3}	$80,6\pm3,8^{2,3}$	97,0±1,5	98,5±1,1	97,0±1,5	97,0±1,5		
Штаммы микст-форм	134	100,0±0,0	98,5±1,1 ³	$97,0\pm1,5^3$	97,0±1,5 ³	98,5±1,1 ³	97,0±1,5³	97,0±1,5³		
Контроль	44	54,6±7,6	27,3±6,7	40,9±7,4	4,5±3,2	6,8±3,2	4,5±3,2	_		

¹ Здесь и в табл. 2 и 3: АЛА - антилизоцимная, АКА - антикомплементарная и АИА - антиинтерфероновая активность.

² Статистически достоверное различие с микст-формой инфекции.

3 Статистически достоверное различие с контролем.

Таблица 2 Персистентная активность штаммов энтеробактерий, выделенных от больных с моноформой урогенитальной инфекции

Род энтеро- бактерий	Кол-во штаммов		Частота обнаружения факторов персистенции и их сочетаний, %							
	абс.	%	AKA	АИА	АЛА	АЛА+АКА	АЛА+АИА	АИА+АКА	АЛА+АКА +АИА	
Escherichia	76	70,4	85,5±4,0	89,5±3,5	72,4±5,1	100,0	98,0±1,0	96,0±2,8	96,0±2,8	
Enterobacter	2	1,8	100,0	100,0	50,0±50,0	100,0	100,0	100,0	100,0	
Citrobacter	11	10,1	81,8±12,2	63,6±15,2	45,5±15,7	100,0	100,0	100,0	100,0	
Klayvera	-	-	_	-	-	-	-	-	-	
Klebsiella	5	4,6	80,0±20,0	60,0±24,4	60,0±24,4	100,0	100,0	100,0	100,0	
Serratia	8	7,4	75,0±16,3	75,0±16,3	37,5±18,3	100,0	100,0	100,0	100,0	
Pantoae	1	0,9	-	_	-)	-	-	-)	_	
Proteus	5	4,7	100,0	100,0	40,0±24,5	100,0	100,0	100,0	100,0	
Всего:	108	100,0	84,3±3,5	80,6±3,8	63,9±10,3	98,5±1,1	97,0±1,5	97,0±1,5	97,0±1,5	

при смешанной форме инфекции, сочетающей в качестве возбудителей энтеробактерии и специфические виды. К тому же последние нередко были представлены сложными биоценозами в виде ди-, три-, тетра- и прочих вариантов, что делало весьма затруднительным выживание их участников. В процессе взаимодействия возможно преобразование различных свойств микробов либо в сторону их усиления, либо — ослабления.

Немаловажное значение в определении межмикробного взаимодействия и отношений имеет и сам характер участников биоценозов, населяющих организм больного, напряженность как действующих в нем защитных механизмов, так и сопротивляемость друг другу биологических объектов. В этой связи проанализированы признаки персистенции энтеробактерий разной родовой принадлежности, единолично действовавшие в организме больных урогенитальными инфекциями, а также при их сочетании со специфическими возбудителями, усложнявшими условия биоценотипических отношений. Одной из особенностей моноизолятов различных представителей условно-патогенной микрофлоры оказалось отсутствие этиологического участия в патогенезе заболевания представителей двух родов — Klayvera и Pantoae. Другой закономерностью явилась относительно низкая частота показателей персистенции, но главным образом антилизоцимной

активности, приближенной к таковой у контрольных штаммов и статистически значимо не отличающейся от них. Другие показатели различались в сравниваемых группах в несколько раз (табл. 2).

Особый интерес вызывали клинические штаммы изоляты представителей семейства Enterobacteriaceae, выделенные от больных с микст-формами урогенитальных инфекций, включавших в себя и специфические виды возбудителей (табл. 3). Прежде всего следует отметить увеличение представительства энтеробактерий рода Klayvera и появление штаммов рода Pantoae, отсутствовавших при заболеваниях моноэнтеробактериальной этиологии. Примечательно и резкое нарастание частоты персистентности условно-патогенных микроорганизмов в ряде других родов энтеробактерий вплоть до массового абсолютного (100%) уровня, причем по всем факторам. Это, в частности, отмечено у штаммов энтеробактерий не только родов Klayvera, но и у Citrobacter, Enterobacter, Proteus, Serratia. Довольно стабильно вели себя в сложных биоценотипических условиях эшерихии, обнаруживая персистентные качества синхронно с усилением патогенности.

При микст-формах урогенитальных инфекций с участием специфических возбудителей обнаружена четкая зависимость выраженности персистентных характеристик энтеробактерий от вида сопутствующих им в биоценозе ассоциантов. Так, антиинтерфероновой

Род энтеро- бактерий	Кол-во штаммов		Частота обнаружения факторов персистенции и их сочетаний, %							
	абс.	%	AKA	АИА	АЛА	АЛА+АКА	АЛА+АИА	АИА+АКА	АЛА+АКА +АИА	
Escherichia	50	37,3	96,0±2,8	100,0	100,0	96,0±2,8	98,0±1,9	96,0±2,8	96,0±2,8	
Enterobacter	5	3,7	100,0	100,0	100,0	100,0	100,0	100,0	100,0	
Citrobacter	12	9,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	
Klayvera	21	15,7	100,0	85,7±7,6	100,0	100,0	87,5±7,6	85,7±7,6	85,7±7,6	
Klebsiella	22	16,4	100,0	100,0	100,0	100,0	100,0	100,0	100,0	
Serratia	19	14,2	100,0	94,7±5,7	100,0	100,0	100,0	100,0	_	
Pantoae	-	-	-	-	-	-	-	-	100,0	
Proteus	5	3,7	100,0	100,0	100,0	100,0	100,0	100,0	97,0±1,5	
Всего:	134	100,0	98,5±1,1	97,0±1,5	100,0	98,5±1,1	97,0±1,5	97,0±1,5	97,0±1,5	

Таблица 3 Персистентная активность штаммов энтеробактерий, выделенных от больных с микст-формами урогенитальных инфекций

активностью чаще обладали изоляты из биоценоза с уреаплазмами (30,0%) и кандидами (21,5%), а с другими видами это наблюдалось гораздо реже: с микоплазмами — в 15,4%, с гарднереллами — в 13,8%, с хламидиями — в 12,3%, с трихомонадами — всего в 6,9%. Однако в более сложных полиэтиологических биоценозах эта частота резко возрастала (вплоть до 100,0%), например при сочетаниях «микоплазмоз-кандидоз», «микоплазмоз-кандидоз-гарднереллез», «трихомониаз-кандидоз-микоплазмоз-уреаплазмоз». Возможной причиной этого явления служит синергидное или антагонистическое взаимодействие возбудителей, стимулирующие защитно-персистирующие свойства энтеробактерий.

Таким образом, можно предположить, что при увеличении числа микробов, участвующих в биоценозе, формируется их сложное взаимодействие, в ходе которого определенные виды обоюдно «пользуются услугами» друг друга, обеспечивая оптимальные условия для жизнедеятельности и проникновения в организм человека с последующей облегченной колонизацией органов и тканей. Это имеет важное патогенетическое значение для развития урогенитальной инфекции, ее осложнений и исходов, что определяет новые подходы к диагностике, прогнозу, профилактике и лечению урогенитальных инфекций, передающихся половым путем.

выводы

- 1. Условно-патогенные энтеробактерии 8 родов семейства *Enterobacteriaceae* имеют важное этиопатогенетическое значение в развитии и распространении урогенитальных инфекций, передающихся половым путем;
- 2. Условно-патогенные энтеробактерии обладают комплексом механизмов персистенции, подавляющих основные гуморальные факторы естественной резистентности организма к инфекции и формируя одно- и многокомпонентные иммунодефициты;
- 3. Специфические возбудители урогенитальных инфекций, передающихся половым путем, си-

нергисты и индукторы условно-патогенных энтеробактерий — усиливают их персистентность в отношении гуморальных факторов защиты организма (интерферона, лизоцима, комплемента и их сочетаний);

4. При диагностике полиэтиологических форм урогенитальных инфекций следует обращать внимание на наличие, характер и персистентность сопутствующих условно-патогенных энтеробактерий, причастных к патогенезу заболевания.

Литература

- 1. Агапова О.В., Бондаренко В.М. //Журн. микробиол., эпидемиол. и иммунол. 1998. № 2. С. 121—125.
- 2. Брилис В.И., Брилене Т.А., Ленцнер Х.П., Ленцнер А.А. //Лаб. дело. - 1986. - № 4. - С. 210-212.
- 3. Брудастов Ю.А., Дерябин Д.Г. //Журн. микробиол., эпидемиол. и иммунол. 1994, прил. С. 28—32.
- 4. Бухарин О.В. //Журн. микробиол., эпидемиол. и иммунол. — 1994, приложение. — С. 4—13.
- 5. Бухарин О.В., Соколов В.Ю. Способ определения антиинтерфероновой активности микроорганизмов // A.C. СССР№ 154191. Открытия, № 18, 15.05.1990.
- 6. Бухарин О.В., Усвяцов Б.Я., Малышкин А.П., Немцева И.В. //Журн. микробиол., эпидемиол. и иммунол. - 1984. -№2.- С. 27-28.

Поступила в редакцию 04.04.06.

BIOSYSTEM OF THE CONDITIONAL-PATHOGENIC BACTERIA AND UROGENITAL SEXUAL TRANSMITTED INFECTIONS IN THE GENESIS OF THE HUMORAL IMMUNODEFICIENCIES

N.S. Motavkina, E.N. Bushueva

Vladivostok State Medical University

Summary — The factors of persistency at 286 strains of enterobacteriaof8 kinds of Enterobacteriaceae, allocated from patients with mono- and mixt-forms of uro-genital infections are investigated. It is shown, that enterobacteria has a complex of mechanisms, overwhelming the basic resistance components in the organism and forming multicomponent immunodeficiency. It is judged, that at diagnostics of multi-etiologic uro-genital infections it is necessary to take into account the presence, character of the accompanying conditional — pathogenic enterobacteria.

Pacific Medical Journal, 2006, No. 3,p. 40-42.