УДК 615.37: 577.114:582.272:611

DOI: 10.17238/PmJ1609-1175.2018.4.75-79

Фукоидан из бурой водоросли Fucus evanescens: иммунофенотипические и морфологические изменения дендритных клеток эффекторов врожденного иммунитета

<u>И.Д. Макаренкова</u>¹, С.П. Ермакова², Н.К. Ахматова³, Т.И. Имбс², И.Б. Семенова³, М.Ю. Хотимченко⁴, Н.Н. Беседнова¹, М.А. Макаренков⁵, Т.Н. Звягинцева²

 1 Научно-исследовательский институт эпидемиологии и микробиологии им. Г.П. Сомова (690087, г. Владивосток, ул. Сельская, 1), ² Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН (690022, г. Владивосток, пр-т 100-лет Владивостоку, 159), ³ Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова (105064, г. Москва, М. Казенный пер., 5а), ⁴ Дальневосточный федеральный университет (690091, г. Владивосток, ул. Суханова, 8), 5 Медицинское объединение ДВО РАН (690022 г. Владивосток, ул. Кирова, 95)

Исследовано действие фукоидана – сульфатированного полисахарида из морской бурой водоросли Fucus evanescens – на морфофункциональные свойства дендритных клеток, генерированных из костного мозга мышей линии BALB/c. Установлено, что фукоидан индуцирует созревание и морфологические изменения дендритных клеток. Результаты работы подтверждают, что фукоидан из F. evanescens активирует систему врожденного иммунитета и может быть использован для защиты организма в условиях комплексной терапии инфекционных заболеваний.

Ключевые слова: фукоидан, дендритные клетки, иммунофенотип, морфология

Универсальной особенностью дендритных клеток (ДК) считается их высокая способность к распознаванию паттернов патогенных микроорганизмов различных таксономических групп и презентация антигена наивным Т-лимфоцитам, что обеспечивает развитие иммунного ответа при бактериальных, вирусных и онкологических заболеваниях [1, 4, 7]. Взаимодействие паттерн-распознающих рецепторов ДК, и прежде всего Toll-подобных рецепторов (Toll-like receptor – TLR), с лигандами приводит к развитию сигнального каскада, активации транскрипционных ядерных факторов и экспрессии разнообразных генов иммунного ответа. В настоящее время TLR служат мишенью для разработки новых адъювантов, поскольку их активация в процессе специфического связывания с лигандами играет ключевую роль в созревании и активации ДК (определяющих путь дифференцировки Т-лимфоцитов), развитии эффекторных механизмов врожденного и адаптивного иммунного ответа [1, 5, 9, 12].

Одним из актуальных направлений современной иммунологии можно назвать поиск эффективных биологически активных веществ – модификаторов функций врожденного иммунитета. Потенциальным источником для разработки фармакологических препаратов нового поколения с выраженным иммуномодулирующим действием считаются фукоиданы – гомо- и гетеросульфатированные полисахариды морских бурых водорослей, демонстрирующие выраженную противоопухолевую, иммуномодулирующую, антикоагулянтную, противовирусную, противовоспалительную и антибактериальную активности [2, 3, 6, 8, 10, 11, 13].

Фукоидан из бурой водоросли Fucus evanescens

обладает полифункциональным спектром действия

и служит основой для разработки биологически активных веществ. Сочетание противовоспалительных, противоопухолевых и иммуномодулирующих свойств с антикоагулянтной и тромболитической активностью, а также гиполипидемические и гипогликемические свойства фукоидана из F. evanescens открывают перспективы его применения для коррекции различных патологических процессов. Клинические исследования показали, что включение полисахаридной композиции «Фуколам», основным компонентом которой служит фукоидан из *F. evanescens*, в базисную терапию больных облитерирующим атеросклерозом сосудов нижних конечностей с целью коррекции дисфункции иммунной системы способствовало нормализации липидного обмена, снижению коэффициента атерогенности, восстановлению баланса между перекисным окислением липидов и антиоксидантной защитой клеток [2, 3, 6]. С точки зрения доказательной медицины изучение механизма действия фукоидана из *F. evanescens* на ключевые эффекторы врожденного иммунитета открывает возможности для его дальнейших клинических испытаний и использования в комплексной терапии при онкологических и инфекционных заболеваниях.

Цель работы: анализ влияния фукоидана – сульфатированного полисахарида из бурой водоросли F. evanescens - на морфологические и иммунофенотипические свойства дендритных клеток костномозгового происхождения.

Материал и методы

Эксперимент проведен на 20 мышах-самцах линии BALB/с весом 16–18 г, полученных из питомника НЦ биомедицинских технологий «Андреевка» (Московская

область). Исследования выполнены с соблюдением правил и международных рекомендаций Европейской конвенции по защите позвоночных животных, используемых в экспериментальных работах.

Выделение и изучение химической структуры сульфатированного полисахарида проведены в ТИБОХ ДВО РАН. Фукоидан из F evanescens представлял собой частично ацитилированный $1\rightarrow 3; 1\rightarrow 4-\alpha-L$ -фукан (интервал М.м. 40-60 кДа), сульфатированный в основном по положениям C_2 - и в меньшей степени – по C_4 -остаткам фукозы. Содержание сульфатов – 27 %. Моносахаридный состав представлен Fuc: Gal: Xyl: Мап в соотношении 77,9:9,5:8,4:4,2 [13].

ДК получали из клеток костного мозга. Костный мозг мышей гомогенизировали в среде RPMI-1640 (Sigma, США), трижды осаждали центрифугированием (250g×5 мин.) и переводили в обогащенную среду культивирования (10⁶ клеток/мл среды RPMI-1640 с добавлением 100 мкг/мл гентамицина сульфата и 10%-ной термоактивированной эмбриональной телячьей сыворотки), содержавшую рекомбинантные факторы роста – гранулоцитарно-макрофагальный колониестимулирующий фактор и интерлейкин-4 (по 80 и 20 нг/мл; Biosource, США). Клетки культивировали при 37°C в 5%-ном углекислотном инкубаторе. На третьи сутки проводили повторную цитокиновую стимуляцию. Смену среды выполняли на шестые сутки, добавляя в опытные флаконы к популяции незрелых ДК индукторы созревания: фукоидан – 100 мкг/мл, и коммерческий фактор некроза опухоли-α (tumor necrosis factor a – TNFa) – 20 нг/мл (Biosours, США). Контролем стали незрелые ДК. Клетки с индукторами культивировали в течение 48 часов при 37°C в 5%-ном углекислотном инкубаторе.

Оценку иммунофенотипа ДК осуществляли методом проточной цитофлуориметрии на приборе Cytomix FC-500 (Beckman Coulter, CIIIA) с применением моноклональных антител (eBiosciences, CIIIA), меченных флуоресцин изотиоцианатом, к кластерам дифференцировки (cluster of differentiation – CD): CD34, CD38, CD83-PE, CD86-PE, CD80, CD11c, CD14-PE, а также к антигенам главного комплекса гистосовместимости класса II, TLR2 (CD282) и TLR4 (CD284-PE).

Для окраски актинового цитоскелета клетки с индукторами культивировали в плоскодонных планшетах с покровным стеклом. Через 48 часов после внесения индукторов отбирали среду из лунок, а клетки на стеклах фиксировали 3,7 % раствором параформальдегида на натрий-фосфатном буфере (15 мин. при комнатной температуре). Окраску актинового цитоскелета проводили с использованием фаллоидина с флуоресцентным красителем (Alexa Fluor 594 phalloidin, Invitrogen) в разведении 1:150. Молекулы ДНК клеток окрашивали водным раствором красителя Hoechst 33342 (Sigma, США), разведенным до концентрации 1 мкг/мл. Клетки фотографировали при помощи микроскопа Nikon Eclipse Ti-U, оснащенного камерой Infinity 3 и флуоресцентными фильтрами UV-1A (для препаратов, окрашенных красителем Hoechst 33342, Sigma), B-2A (для наблюдения флуоресценции в зеленом диапазоне) и G-2A (для наблюдения флуоресценции в красном диапазоне).

Статистическую обработку данных проводили с помощью математического пакета Statistica 10. Вычисляли средние значения величин, определяли медиану (Me), нижний и верхний квартили (LQ–UQ). Достоверность разности анализировали при помощи t-критерия Стьюднта.

Результаты исследования

Сульфатированный полисахарид способствовал созреванию ДК, о чем свидетельствовали выраженные изменения клеток. Микроскопически незрелые ДК, генерированные из клеток-предшественников костного мозга мышей, на 6-е сутки культивирования имели округлую или неправильную форму, вакуолизированную цитоплазму и характеризовались способностью к выраженной пролиферации (рис., а). На 9-е сутки культивирования в популяции, как под действием TNFα, так и фукоидана, наблюдались выраженные морфологические изменения (рис., б, в). Появились крупные клетки неправильной звездчатой формы с обширной вакуализироанной цитоплазмой, эксцентрично расположенным неправильной формы ядром с многочисленными инвагинациями и большим

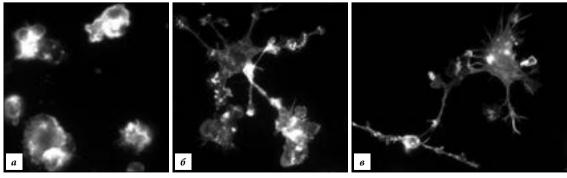


Рис. Микрофотографии ДК:

a – незрелые ДК на 6-е сутки культивирования в присутствии факторов роста; b – ДК на 9-е сутки культивирования в присутствии b трисутствии b гочтовии b гочтовии

количеством тонких цитоплазматических псевдоподий разнообразной длины и формы, что свидетельствовало о процессе созревания.

Процесс созревания ДК определялся по совокупности морфологических, иммунофенотипических и функциональных параметров. Незрелые ДК, генерированные из костного мозга мышей линии СВА в присутствии гранулоцитарно-макрофагального колониестимулирующего фактора роста и интерлейкина-4, фенотипически обладали низким уровнем экспрессии ко-стимулирующих (CD80 и CD86) и антигенпредставляющих (главный комплекс гистосовместимости II класса) молекул и высоким уровнем CD34 – маркера незрелых клеток (табл.). Иммунофенотип и процесс созревания клеток оценивали по изменению уровня экспрессии дифференцировочных молекул на их поверхности: CD34, CD83, CD11c, CD38, CD80, CD86, CD14, молекул главного комплекса гистосовместимости класса II, TLR2 и TLR4.

Установлено, что, как под действием TNFα, так и сульфатированного полисахарида, происходило снижение экспрессии маркера незрелых клеток CD34 (в 7,9 и 4,5 раза, соответственно) и увеличение выработки маркера терминальной дифференцировки ДК – CD83 (в 8,8 и 7,1 раза, соответственно). Это подтверждал процесс снижения количества недифференцированных элементов. Следует отметить, что полученная популяция имела гетерогенный характер и содержала определенное количество клеток моноцитарной линии, о чем свидетельствовало наличие моноцитарно-макрофагального маркера CD14, экспрессия которого в процессе созревания снижалась под действием TNFα и под влиянием полисахаридной композиции (табл.).

Свойством ДК, отличающем их от других антигенпрезентирующих клеток, можно назвать способность представлять антигены и активировать наивные Т-клетки. Важную роль в процессе презентации антигена вместе с молекулами главного комплекса гистосовместимости класса II играют костимуляционные молекулы (CD80/CD86), усиливающие межклеточное взаимодействие при представлении антигена Т-лимфоцитам [1, 4, 7]. Анализ влияния ТПРа и фукоидана из F. evanescens на активацию клеток показал увеличение экспрессии активационного маркера CD38 (в 2 и 1,5 раза, соответственно), адгезивных молекул CD11c (в 4,5 и 3 раза, соответственно). Выработка костимулирующих молекул CD80 и CD86 увеличилась в 4 и 2,5 раза и в 3,4 и 2,5 раза, соответственно. Также экспрессия антигенпредставляющих молекул главного комплекса гистосовместимости класса II возросла в 3,6 и 3,4 раза по сравнению с контролем, соответственно. Это свидетельствовало о способности созревших ДК представлять антиген наивным CD4⁺-клеткам (табл.).

Направление дифференцировки CD4⁺-клеток зависит прежде всего от Toll-подобных рецепторов, активация которых индуцирует экспрессию различных генов цитокинов [1, 4, 5]. Усиление экспрессии TLR2 и TLR4 (в 2,7 и 2,9 раза) на мембране ДК под действием биологически активной добавки «Фуколам»

Таблица Характеристика фенотипа дендритных клеток

Поля полужирум у учетом 0/				
Маркеры и показатели		Доля позитивных клеток, %		
		Контроль	ДК+TNFa	ДК+фукоидан
CD34	Me	44,9	5,7ª	10,0ª
	LQ-UQ	37,7-46,0	5,6-9,4	9,6-10,9
CD83	Me	8,1	70,3 ^a	57,6 ^{a, 6}
	LQ-UQ	6,1-10,0	62,6-71,3	45,2-58,8
CD14	Me	54,2	32,4 ^a	40,1 ^a
	LQ-UQ	53,1-64,4	31,6-40,1	39,5-40,8
CD11c	Me	8,5	38,3 ^a	25,1 ^{a, 6}
	LQ-UQ	8,2-14,8	37,2-40,0	15,1-25,5
CD38	Me	18,1	38,2ª	26,8ª
	LQ-UQ	18,1-24,3	29,7-39,5	26,2-30,8
CD80	Me	12,0	48,4 ^a	30,6 ^{a, 6}
	LQ-UQ	11,6-19,2	47,5-57,5	24,0-31,9
CD86	Me	16,1	54,6 ^a	39,8 ^{a, 6}
	LQ-UQ	13,0-17,8	53,5-65,5	38,6-45,8
MHC II*	Me	21,1	76,9 ^a	72,0 ^a
	LQ-UQ	18,9-22,3	76,3-81,2	63,0-77,1
TLR2	Me	22,3	55,1 ^a	60,7 ^a
	LQ-UQ	21,5-23,4	43,0-55,7	50,4-61,4
TLR4	Me	6,6	25,5ª	19,3 ^{a, 6}
	LQ-UQ	5,2-13,0	27,4-33,3	17,5-23,1

^{*} Major Histocompatibility Complex class II.

свидетельствовала в пользу того, что созревшие ДК способны к активации клеток-эффекторов врожденного иммунитета.

Обсуждение полученных данных

Изучение влияния иммунобиологически активных препаратов на морфофункциональные изменения ДК, позволяет оценить их действие на эффекторные механизмы врожденного иммунитета и создают научную основу для разработки лекарств нового поколения [3, 8, 11]. В настоящее время широко исследуется биологическое действие фукоиданов – сульфатированных полисахаридов морских бурых водорослей. Так, на основе фукоидана из бурой водоросли *F. evanescens*, обладающего широким спектром фармакологического действия, создана биологически активная добавка к пище [2, 3, 6, 12, 13].

По мнению ряда авторов, механизм действия фукоиданов связан с углеводспецифическим взаимодействием с мембранными рецепторами клеток, что усиливает экспрессию сигнальных мембранных молекул и инициируют развитие каскада биохимических реакций, приводящих к активации и функциональным изменениям иммунокомпетентных клеток, активации гемопоэза в красном костном мозге и пролиферативным процессам в первичных и вторичных органах иммуногенеза, активации Т- и В-лимфоцитов при эндотоксемии и т.д. Кроме того, за счет стимуляции цитотоксического действия натуральных киллеров

^а Разница с контролем (незрелые ДК) статистически значима.

⁶ Разница с группой «ДК+ТNFα» статистически значима.

фукоиданы рассматриваются как адъюванты противоопухолевого иммунного ответа [3, 6, 11, 12].

Одним из важных критериев созревания и дифференцировки ДК служит наличие на их мембране маркера терминальной дифференцировки клеток – CD83 [1, 4, 7]. Усиление его экспрессии на фоне выраженного снижения экспрессии CD34 – маркера недифференцированных клеток – свидетельствуют об индуцирующем действии сульфатированного полисахарида из бурой водоросли, на процесс созревания. Это подтверждается типичными морфологическими изменениями клеток и появлением многочисленных цитоплазматических отростков, необходимых для контакта и представления антигена иммунокомпетентным клеткам.

Важное значение для активации и реализации эффекторных функций ДК имеют наследственно закодированные паттерн-распознающие рецепторы, адгезивные, костимулирующие и антигенпредставляющие молекулы, необходимые для распознавания, процессинга и презентации антигенов в комплексе с молекулами главного комплекса гистосовместимости CD4+-клетками. Анализ иммунофенотипа ДК показал, что сульфатированный полисахарид способствовал их дифференцировке. ДК, которые экспрессировали адгезивные (CD11c), активационные (CD38), костимулирующие (CD80/CD86) и антигенпредставляющие (главного комплекса гистосовместимости класса II) молекулы, способны к контактным взаимодействиям и презентации антигенов наивным Т-лимфоцитам (CD4+-клеткам).

Экспонирование на клеточной мембране моноцитарно/макрофагального маркера CD14 возможно связано с присутствием определенного количества клеток миело-моноцитарной линии, что говорит о гетерогенности полученной популяции. Можно предположить, что часть клеток не достигла завершающей фазы дифференцировки, о чем свидетельствовало наличие незначительного процента клеток, меченных CD34, маркером незрелых ДК. Кроме того, не исключено, что сульфатированный полисахарид из бурой водоросли F. evanescens, способствует не только экспрессии TLR4 и костимулирующих молекул, но и CD14 на поверхности ДК. Тем не менее следует отметить, что снижение выработки CD14, как под действием классического индуктора (TNFα), так и под влиянием фукоидана на фоне выраженного увеличения экспрессии CD83, подтверждает дифференцировку клеток в ДК.

Направление дифференцировки CD4⁺-клеток во многом зависит от паттерн-распознающих рецепторов, участвующих в связывании экзогенных и эндогенных лигандов. Взаимодействие лиганда с конкретным TLR индуцирует генетически детерминированное развитие сигнального каскада через ряд адаптерных молекул и активацию транскрипционных ядерных факторов. Это запускает экспрессию различного спектра генов цитокинов или интерферониндуцибельных генов, оказывающих влияние на дифференцировку CD4⁺-клеток, что и определяет формирование и регуляцию иммунного ответа по клеточному или гуморальному типу. Кроме того, активация Toll-подобных рецепторов

индуцирует экспрессию костимулирующих молекул и терминальное созревание ЛК [1, 4, 5, 9].

Для передачи сигналов TLR2 использует адаптерную молекулу белка первичного ответа миелоидной дифференцировки и опосредованный через эту молекулу и адаптерный белок, содержащий TIR домен, сигнальный путь, который запускает фосфорилирование киназы, ассоциированной с рецептором интерлейкина-1, и активацию транскрипционного ядерного фактора-кВ. Это индуцирует экспрессию генов провоспалительных цитокинов, тогда как TLR4 использует не только адаптерную молекулу белка первичного ответа миелоидной дифференцировки, но и адаптерную пару из белков, содержащих TIR домен, которая активирует интерферон-регулирующие факторы [5, 9, 12].

Увеличение экспрессии TLR2 и TLR4 на клеточной мембране под действием фукоидана позволяет говорить о дальнейшей активации ядерного фактора-кВ и продукции ДК интерферонов, провоспалительных и регуляторных цитокинов, способствующих активации эффекторных механизмов врожденного иммунитета и развитию адаптивного иммунного Т-хелперного ответа 1-го типа.

Таким образом, фукоидан – сульфатированный полисахарид из бурой водоросли *F. evanescens* – способствует активации врожденного иммунитета и может быть использован в качестве индуктора для получения из костномозговых предшественников гетерогенной популяции клеток, состоящей из пула зрелых ДК и клеток моноцитарно-макрофагального ряда, а так же как потенциальный адъювант для создания противоинфекционной защиты организма.

Литература / References

- 1. Ахматова Н.К., Киселевский М.В. Врожденный иммунитет: противоопухолевый и противоинфекционный. М.: Практическая медицина, 2008. 256 с. Akhmatova N.R., Kiselevskiy M.V. Vrozhdennyy immunitet: pro-
 - Akhmatova N.R., Kiselevskiy M.V. Vrozhdennyy immunitet: protivoopukholevyy i protivoinfektsionnyy. Moscow: Prakticheskaya meditsina, 2008. 256 p.
- 2. Имбс Т.Н., Звягинцева Т.Н., Ермакова С.П. «Фуколам» первая в России биологически активная добавка на основе фукоидана // Вестник ДВО РАН. 2015. № 6. С. 145–149. Imbs T.N., Zvyagintseva T.N., Yermakova S.P. "Fukolam" the first food supplement based on fucoidan in Russia // Vestnik of the Far East Branch of the Russian Academy of Sciences. 2015. No. 6. P. 145–149.
- 3. Кузнецова Т.А., Запорожец Т.С., Персиянова Е.В. [и др.]. Перспективы использования сульфатированных полисахаридов бурых водорослей как вакцинных адъювантов // Биология моря. 2016. Т. 42, № 6. С. 399–406. Kuznetsova T.A., Zaporozhets T.S., Persiyanova Ye.V. [et al.]. Prospects for the use of sulfated polysaccharides from brown
 - Prospects for the use of sulfated polysaccharides from brown seaweeds as vaccine adjuvants // Biologiya Morya (Russian Edition). 2016. Vol. 42, No. 6. P. 399–406.
- 4. Талаев В.Ю., Плеханова М.В., Матвеичев А.В. Экспериментальные модели, пригодные для оценки влияния компонентов новых разрабатываемых вакцин на дифференцировку дендритных клеток // МедиАль. 2014. Т. 12, № 2. С. 135–153. Talayev V.YU., Plekhanova M.V., Matveichev A.V. In vitro models for investigation of vaccine component action upon dendritic cell maturation // MediAl. 2014. Vol. 12, No. 2. P. 135–153.
- 5. Тухватулин А.И., Логунов Д.Ю., Щербинин Д.Н. [и др.]. Toll-подобные рецепторы и их адапторные молекулы // Биохимия. 2010. Т. 75, № 9. С. 1224–1243.

- Tukhvatulin A.I., Logunov D.Yu., Shcherbinin D.N. [et al.]. Toll like receptors and their accessory molecules // Biochemistry (Moscow). 2010. Vol. 75, No. 9. P. 1224–1243.
- 6. Фукоиданы сульфатированные полисахариды бурых водорослей. Структура. Ферментативная трансформация и биологические свойства / под ред. Н.Н. Беседновой и Т.Н. Звягинцевой. Владивосток: Дальнаука, 2014. 379 с. Fukoidany – sulfatirovannyye polisakharidy burykh vodorosley.

Struktura. Fermentativnaya transformatsiya i biologicheskiye svoystva / N.N. Besednova and T.N. Zvyagintseva [eds]. Vladivostok: Dalnauka, 2014. 379 p.

- Dalod M., Chelbi R., Malissen B., Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming // EMBO J. 2014. Vol. 33, No. 10. P. 1104–1116.
- 8. Fitton J.H., Stringer D.N., Karpiniec S.S. Therapies from fucoidan: An update // Mar. Drugs. 2015. Vol. 13, No. 9. P. 5920–5946.
- Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors // Nature Immunology. 2010. Vol. 11. P. 373–384.
- Kim S.-Y., Joo H.-G. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy // J. Vet. Sci. 2015. Vol. 16, No. 2. P. 145–150.
- 11. Lebedynskaya E.A., Makarenkova I.D., Lebedynskaya O.V. [et al.]. The effect of sulfated polysaccharides from brown seaweed *Laminaria japonica* on the morphology of lymfoid organs and functional characteristics of immunocompetent cells // Biochem. Moscow Suppl. Ser. B: Biomed Chemistry. 2015. Vol. 9, No. 1. P. 86–94.
- Suppl. Ser. B: Biomed Chemistry. 2015. Vol. 9, No. 1. P. 86–94.
 12. Makarenkova I.D., Logunov D.Y., Tukhvatulin A.I. [et al.]. Sulfated polysaccharides of brown seaweeds are ligands of Toll-like receptors // Biomedical Chemistry. 2012. Vol. 6, No. 1. P. 75–80.
- 13. Zvyagintseva T.N., Shevchenko N.M., Chizhov A.O. [et al.]. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions // J. Exp. Marine Biol. Ecol. 2003. Vol. 294, No. 1. P. 1–13.

Поступила в редакцию 19.09.2018.

FUCOIDAN FROM THE TANG FUCUS EVANESCENS: IMMUNOPHENOTYPIC AND MORPHOLOGICAL CHANGES OF DENDRITIC CELLS – EFFECTORS OF INNATE IMMUNITY

I.D. Makarenkova¹, S.P. Ermakova², N.K. Akhmatova³, T.I. Imbs², I.B. Semenova³, M.Yu. Khotimchenko⁴, N.N. Besednova¹, M.A. Makarenkov⁵, T.N. Zvyagintseva²

¹ Somov Institute of Epidemiology and Microbiology (1 Selskaya St. Vladivostok 690087 Russian Federation), ² G.B. Elyakov Pacific Institute of Bioorganic Chemistry (159, 100 let Vladivostoku Ave. Vladivostok 690022 Russian Federation), ³ Mechnikov Scientific Research Institute of Vaccines and Serums (5a Maly Kazenny Lane, Moscow 105064 Russian Federation), ⁴ Far Eastern Federal University (8 Sukhanova St. Vladivostok 690091 Russian Federation), ⁵ Medical Association of the Far Eastern Branch of the Russian Academy of Sciences (95 Kirova St. Vladivostok 690022 Russian Federation)

Objective. The study of the mechanism of action of sulfated polysaccharide from the tang *Fucus evanescens* on the morphological and immunophenotypic characteristics of dendritic cells (DC) – the key effectors of innate immunity – will enable to establish a rational spectrum for its use.

Methods. We investigated a partially acylated sulfated fucoidan from the tang F. evanescens. Immature DCs were obtained from bone marrow cells of BALB/c mice. Fucoidan (100 μ g/ml) and commercial TNF α (20 ng/ml) were added as maturation inducers. Immunophenotypic cells were determined by flow cytometry using monoclonal antibodies.

Results. Fucoidan induced the maturation of DC, as evidenced by their immunophenotypic and morphological changes. A pool of mature cells capable of presenting the antigen to naive T-lymphocytes and activating the effector mechanisms of innate immunity was formed.

Conclusions. Thus, the sulfated polysaccharide from *F. evanescens*, which contributes to the activation of effector cells of innate immunity, can be used as a potential adjuvant to create an anti-infective defense of the body.

Keywords: fucoidan, dendritic cells, immunophenotype, morphology

Pacific Medical Journal, 2018, No. 4, p. 75-79.

УДК 616-022.6-053.2-085.33 DOI: 10.17238/PmJ1609-1175.2018.4.79-83

Применение препаратов интерферона и его индукторов в амбулаторной педиатрической практике

Т.Н. Суровенко, Л.Г. Присеко

Тихоокеанский государственный медицинский университет (690002, г. Владивосток, пр-т Острякова, 2)

Частота заболеваемости острыми респираторными вирусными инфекциями (ОРВИ) детей по-прежнему остается высокой. Применение существующего широкого спектра противовирусных лекарственных средств имеет определенные возрастные ограничения. Сохраняется потребность в универсальных препаратах, эффективно действующих на многие виды возбудителей и безопасных в детском возрасте. В клинических рекомендациях по терапии ОРВИ у детей допускается применение препаратов интерферона (ИФН) и его индукторов, но отмечается, что нет надежных доказательств эффективности их использования в отношении заболеваний этой группы. Тем не менее, как выяснилось в ходе исследования, препараты ИФН и его индукторов активно применяются в поликлинической практике у детей с раннего возраста в комплексной терапии ОРВИ, как противовирусные и иммуномодулирующие средства, что требует анализа их эффективности и безопасности.

Ключевые слова: дети, острые респираторные вирусные инфекции, лечение, интерфероны

Частота острых респираторных вирусных инфекций (ОРВИ) у детей различных возрастов до сих пор остается высокой. По данным Росстата, среди

детей до 14 лет число зарегистрированных случаев острых инфекций верхних дыхательных путей возросло с 19559,8 тыс. в 2014 г. до 21352,2 тыс. в 2016 г. (или с 81282 до 84508,8 на 100 тыс. детей соответственно) [2]. Наибольшее количество заболевших