УДК 616.151.5:616.131-005.7(571.63)

ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ ТРОМБОФИЛИИ У ПАЦИЕНТОВ С ТРОМБОЭМБОЛИЕЙ ЛЕГОЧНОЙ АРТЕРИИ В ПРИМОРСКОМ КРАЕ

 $M.\Phi.$ Киняйкин^{1,2}, И.В. Наумова^{1,2}, Е.Д. Буякова², А.В. Булашева², Е.А. Рожнова², О.В. Кураспедиани²

¹ Тихоокеанский государственный медицинский университет (690950, Владивосток, пр-т Острякова, 2),

Ключевые слова: венозные тромбоэмболические осложнения, молекулярно-генетическое исследование, мутации генов.

Проанализирован генетический полиморфизм тромбофилии у 68 больных, перенесших тромбоэмболию легочной артерии (ТЭЛА), в Приморском крае. Полиморфизм генов, ассоциированных с риском тромбофилии и венозных тромбоэмболических осложнений, имел свои особенности по сравнению с таковым в европейской популяции и в первую очередь был представлен мутацией генов фолатного цикла (97,1 % наблюдений) и нарушениями в гене ингибитора активатора плазминогена типа 1 (88,2 % наблюдений). Более чем у половины пациентов (55,9 %) регистрировалась генетически обусловленная склонность к гиперагрегации тромбоцитов. Во всех случаях с ТЭЛА отмечен синергизм факторов тромбоза. Данные изменения необходимо учитывать, разрабатывая программы вторичной профилактики венозных тромбоэмболических осложений. Терапия должна быть длительной (возможно, пожизненной) и включать препараты, воздействующие на различные звенья свертывающей системы исходя не только из данных лабораторных показателей нарушения гемостаза, но в первую очередь - из данных молекулярно-генетических исследований.

Венозные тромбоэмболические осложнения (ВТЭО) – тромбозы глубоких вен и тромбоэмболия легочной артерии (ТЭЛА) являются актуальной проблемой современной медицины. В общей популяции населения тромбозы глубоких вен регистрируются в 160, а смертельная ТЭЛА – в 60 случаях на 100 000 человек ежегодно [11]. Каждый год на земле от ТЭЛА погибает 1 человек из 1000, или 0,1 % населения. Каждая третья смерть в клинике связана с ТЭЛА, а в онкологии ТЭЛА – непосредственная причина каждой второй смерти [4].

Факторами риска ВТЭО являются иммобилизация, хирургические операции, беременность, длительные перелеты на самолетах, прием контрацептивов и др. [7]. Существует также ряд наследственных патологий гемостаза. В настоящее время для подобных состояний используется термин «тромбофилия». З.С. Баркаган и А.П. Момот определяют ее как нарушения гемостаза и гемореологии, которые характеризуются повышенной склонностью к развитию тромбозов кровеносных сосудов с ишемией органов [1]. В настоящее время выделено большое число первичных (генетически обусловленных) и вторичных (приобретенных, симптоматических) тромбофилий, отличающихся друг от друга по этиологии, характеру нарушений гемостаза, осложнениям и прогнозу [1]. Первичная тромбофилия связана с полифакторными изменениями в генной структуре. При этом даже малейшие отличия в генной

Киняйкин Михаил Федорович – канд. мед. наук, доцент кафедры госпитальной терапии и фтизиопульмонологии ТГМУ, заведующий краевым пульмонологическим центром ПККБ M 1; e-mail: 589014@bk.ru

структуре могут приводить к совершенно различным клиническим проявлениям [3]. Дифференциация этих форм патологии принципиально важна, поскольку разные виды тромбофилий, несмотря на сходные клинические проявления, требуют применения разных методов профилактики и лечения.

Генетический полиморфизм у каждого человека определяет риск развития тромбофилии и ВТЭО. Его характеристика в разных регионах в популяции различна [2, 5, 6, 8–10]. В Приморском крае изучение полиморфизма генов тромбофилии не проводилось.

Материал и методы. Обследовано 68 человек (45 женщин и 23 мужчины) в возрасте от 22 до 88 лет, перенесших ТЭЛА и проходивших лечение в краевом пульмонологическом центре ПККБ № 1 г. Владивостока с 2009 по 2012 г. Диагноз был установлен на основании клинической картины, данных инструментального обследования (рентгенография и спиральная компьютерная томография органов грудной полости, ангиопульмонография, эхокардиография, допплеровское сканирование вен нижних конечностей), лабораторных тестов (D-димер). В 11 случаях (16,1%) была зарегистрирована тромбоэмболия крупных ветвей, в 57 случаях (83,8%) – мелких ветвей легочной артерии.

Проведено молекулярно-генетическое обследование с определением мутаций, ассоциированных с риском развития тромбофилии:

- ген F1 (FGB) β-фибриноген (полиморфизм 455 G>A),
- ◆ ген F2 коагуляционный фактор 2 / протромбин (полиморфизм – 20210 G>A),
- ◆ ген F5 коагуляционный фактор 5 (полиморфизм 1691 G>A, мутация Лейдена),
- ◆ ген F7 коагуляционный фактор 7 (полиморфизм 10976 G>A Arg506Gln),
- ◆ ген F13 коагуляционный фактор 13 (полиморфизм 163 G>T, Val34Leu),
- ген *ITGA2* интегрин-альфа-гликопротеин la, тромбоцитарный рецептор к коллагену (полиморфизм – 807 C>T, F224F),
- ген ITGB3 (GPIIIA) рецепторный гликопротеин IIIa (GpIIIa), интегрин-бета 3, тромбоцитарный рецептор фибриногена (полиморфизм − 1565 T>C, Leu33Pro),
- ◆ ген PAI-1 (SERPINE 1), ингибитор активатора плазминогена типа I (полиморфизм – 675 5G>4G).

Исследовались гены, ассоциированные с нарушениями фолатного цикла:

² Приморская краевая клиническая больница № 1 (690091, г. Владивосток, ул. Алеутская, 57)

- ген *MTHFR* метилентетрагидрофолатредуктаза (полиморфизм 677 C>T(Ala222Val)¹,
- ген *MTHFR* метилентетрагидрофолатредуктаза (полиморфизм 1298 A>G (Glu429Ala)²,
- ◆ ген MTR метионинсинтетаза (полиморфизм 2756 A>G (Asp919Gly),
- ◆ ген MTRR метионинсинтетазаредуктаза (полиморфизм 66 A>G (Ile22Met).

Молекулярно-генетическое обследование проводилось в лаборатории медицинского центра «Асклепий» и в молекулярно-генетической консультации Краевого центра специализированных видов медицинской помощи (г. Владивосток).

Результаты исследования. На первом месте по частоте встречаемости отмечены мутации, связанные с нарушениями фолатного цикла, у 66 человек (97,1% от общего числа пациентов). Из этой группы чаще всего встречался ген MTRR (метионинсинтетазаредуктаза) с мутацией 66A>G (Ile22Met) – 60 наблюдений (88,2% случаев). Ген MTHFR (метилентетрагидрофолатредуктазы) с мутацией 1298 A>C определялся у половины пациентов – 35 человек (51,5%), с мутацией 677 C>T – у 33 человек (48,5%). Ген метионинсинтетазы (MTR), мутация 2756A>G, выявлен в 22 случаях (32,4%). Гомозиготные формы мутаций отмечались у трети пациентов – 24 случая (35,3%).

На втором месте оказались нарушения, связанные с геном ингибитора активатора плазминогена типа 1 (полиморфизм – 675 5G>4G) – 60 человек (88,2% случаев). Данная мутация встретилась в гомозиготной форме у 27 человек и была самой частой в гомозиготной форме.

Изменения со стороны генов, ответственных за агрегацию тромбоцитов, мутация $807 \, \text{C} > \text{T} \, (\text{F224F})$ гена интегрин-альфа-гликопротеина Ia (*VLA-2 receptor*) отмечалась у половины пациентов – 38 человек (55,9 %), из них гомозиготная форма – у 15 человек (22,1 %). Мутация $1565 \, \text{T} > \text{C} \, (\text{Leu33Pro})$ рецепторного гликопротеин IIIa (GpIIIa) интегрина-бета 3 зарегистрирована у трети пациентов – 20 наблюдений (29,4 %), но ее гомозиготная форма – лишь у 2 человек (3 %).

У 23 человек (33,8%) отмечалось нарушение со стороны гена F1 (FGB) – β -фибриноген, мутация 455 G>A, но во всех случаях – лишь гетерозиготное носительство.

Мутация гена F5 (мутация Лейдена) на нашем материале встретилась в 10 наблюдениях (14,7%), и лишь у 2 пациентов (3%) она выявлена в гомозиготной форме. Однако в группе лиц с ТЭЛА крупных ветвей (11 человек) данная мутация встречалась у 1/3 пациентов (4 случая). Мутация гена F2 выявлена всего у 2 человек (3%).

Также определялись мутации генов, способствующие гипокоагуляции. Так, мутация гена F7 (полиморфизм 10976 G>A, Arg353Gln) зарегистрирована в 10 случаях (14,7%), и во всех – в гетерозиготной форме. Мутация гена F13 (полиморфизм 163 G>T, Val34Leu) определялась у половины больных – 36 наблюдений (52,9%), но в гомозиготной форме– лишь у 6 человек.

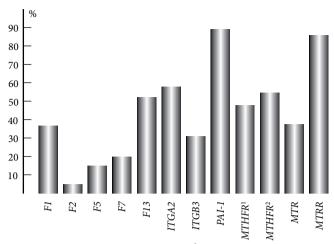


Рис. Частота генетических полиморфизмов, ассоциированных с риском тромбофилии и нарушениями фолатного цикла.

У каждого пациента определялись сочетания 3–5 генетических мутаций, ассоциированных с риском тромбофилии (рис. 1).

Обсуждение полученных данных. На нашем материале практически у всех пациентов (97,1% наблюдений), перенесших ТЭЛА, выявлены генетические мутации, связанные с фолатным циклом, что говорит о нарушениях в обмене метионина, снижении метилирования ДНК и нестабильности генома, повышении уровня гомоцистеина. Гипергомоцистеинемия увеличивает риск тромбозов, сердечно-сосудистой патологии, особенно в ситуации низкого содержания фолатов в пище (вегетарианство), курения, злоупотребления алкоголем и кофе [1, 2, 6, 8, 9]. Всем этим больным в последующем назначались препараты, нормализующие обмен метионина, - фолиевая кислота, витамины группы $B(B_6, B_{12})$. Так же часто (88,2 % наблюдений) определялся полиморфизм гена PAI-1 – мутация сопровождается повышенной экспрессией данного гена и повышением уровня ингибитора активатора плазминогена, в результате чего снижается активность фибринолитической системы, и риск тромбообразования увеличивается в 2 раза [1, 12].

Достаточно часто встречались мутации генов, ответственных за агрегацию тромбоцитов: гена интегрин-альфа-гликопротеина Ia – 38 наблюдений (55,9 %), гена рецепторного гликопротеин IIIа, интегрина-бета 3 – 15 наблюдений (29,4 %). Во всех упомянутых случаях имеется вероятность повышения скорости адгезии и агрегации тромбоцитов, что может приводить к усиленному тромбообразованию, резистентности к аспирину, увеличению риска инфаркта миокарда и ранней потери плода [1, 3, 10]. Больным с данными мутациями в комплекс вторичной профилактики ВТЭО обязательно включались антиагреганты (клопидогрель).

В 1/3 случаев (23 человека) также зарегистрированы нарушения со стороны гена *F1*. У этих пациентов имелась склонность к гиперфибриногенемии, раннему развитию атеросклероза, инфаркту миокарда, патологии беременности, но во всех случаях мутация встречалась в гетерозиготной форме, что в некоторой степени уменьшало тромботический риск. Оригинальные исследования 81

По данным литературы мутация Лейдена (мутация коагуляционного фактора V (1691 G>A) является на-иболее частой генетической причиной тромбофилии в европейской популяции [2, 6, 10]. Наличие полиморфизма 1691 G>A приводит к резистентности фактора V свертывающей системы крови к активации проте-ина C, что обусловливает повышение концентрации фактора V в сыворотке крови и клинически проявляется рецидивирующими венозными тромбозами и тромбоэмболиями. У жителей Приморского края, перенесших ТЭЛА, данная мутация встречалась значительно реже.

Второй по частоте мутацией, ассоциированной с тромбозами, в европейской популяции является мутация G20210A гена F2 (протромбина) [2, 10]. Протромбин является предшественником тромбина, и незначительное увеличение его уровня резко повышает риск тромбозов. У наших же пациентов мутация гена протромбина определялась лишь в 3% случаев.

У некоторых пациентов, кроме тромботических, встречались мутации, способствующие гипокоагуляции – мутации генов F13 и F7. Ген F13 участвует в образовании нерастворимого фибрина, представляющего собой основу тромба, ген F7, взаимодействуя с тканевым фактором, активирует гены F9 и F10, запуская каскад коагуляции. При наличии мутаций данных генов отмечается склонность к гипокоагуляции и кровотечениям [1]. На нашем материале эти мутации встречались в комплексе с мутациями, способствующими тромбообразованию, которые превосходили их по клинической значимости и приводили к ВТЭО.

Таким образом, полиморфизм генов, ассоциированных с риском тромбофилии и ВТЭО, у пациентов в Приморском крае имеет свои особенности по сравнению с европейской популяцией и в первую очередь представлен мутацией генов фолатного цикла и нарушениями в гене ингибитора активатора плазминогена типа 1. В половине случаев регистрируется генетически обусловленная склонность к гиперагрегации тромбоцитов. У всех пациентов, перенесших ТЭЛА, имелся синергизм факторов тромбоза. Данные изменения необходимо учитывать, разрабатывая программы вторичной профилактики венозных тромбоэмболических осложнений. Терапия должна быть длительной (возможно, пожизненной) и включать препараты, воздействующие на различные звенья свертывающей системы, исходя не только из показателей нарушения гемостаза, но в первую очередь - из данных молекулярно-генетических исследований. Описанные исследования показаны всем пациентам, перенесшим или имеющим риск ВТЭО.

Литература

- 1. Баркаган З.С., Момот А.П. Диагностика и контролируемая терапия нарушений гемостаза [2-е изд. дополн.] М.: Ньюдиамед, 2001. 296 с.
- 2. Калашникова Е.А., Кокаровцева С.Н., Коваленко Т.Ф. и др. Частота мутаций в генах факторов V (FV Leidena), протромбина (G20210A) и 5,10 метилентетрагидрофолатредуктазы (C677T) у русских // Медицинская генетика. 2006. Т. 5, № 7. С. 27–29.

- 3. Капустин В.М., Блинов М.Н., Каргин В.Д. и др. Генетические детерминанты наследственной тромбофилии в патогенезе венозного тромбоза // Тер. архив. 2003. №10. С. 78–80.
- 4. Кириенко А.И., Панченко Е.П., Андрияшкин В.В. Венозный тромбоз в практике терапевта и хирурга. М.: Планида, 2012. 336 с.
- 5. Протокол ведения Всероссийского регистра «Генетические факторы риска тромбоза у жителей, проживающих на территории РФ, клиническое фенотипирование и тромбопрофилактика тромбоэмболических осложнений в онтогенезе» // Тромбоз, гемостаз и реология. 2010. № 3 (43). С. 30–78.
- 6. Ровенских Д.Н., Максимов Н.М., Татарникова Н.П. и др. Роль молекулярно-генетических факторов в риске развития острого тромбоза глубоких вен нижних конечностей // URL: http://_kk.convdocs.org/docs/index-63541.html (дата обращения 09.03.2013).
- 7. Российские клиническое рекомендации по диагностике, лечению и профилактике венозных тромбоэмболических осложнений // Ассоциация флебологов России, Всероссийское общество хирургов. М.: Медиа Сфера, 2010. 54 с.
- 8. Тадтаева З.Г., Кацадзе Ю.Л. Полиморфизм гена метилентетрагидрофолатредуктазы, гипергомоцистеинемия и возможности ее медикаментозной коррекции нейромультивитом при мигрени у детей // Казанский мед. журн. 2007. №1. С. 16–20.
- 9. Шмелева В.М. Гипергомоцистеинемия как значимый фактор риска развития артериальных и венозных тромбозов в Северо-Западном регионе России // Тромбоз, гемостаз и реология. 2002. № 1. С. 154–159.
- 10. Шполянская Н.Ю., Озолиня Л.А., Патрушев Л.И и др. Высокая частота встречаемости мутации Leiden у больных с венозными тромбоэмболическими осложнениями в акушерстве и гинекологии // URL: www. hemostas.ru/society/publications/p.13.shtml (дата обращения 09.03.2013).
- 11. Яковлев В.Б., Яковлева М.В. Венозные тромбоэмболические осложнения: диагностика, лечение и профилактика // Рос. мед. вести. 2002. Т. 7, № 2. С. 4–18.
- 12. Balta G., Altay C., Gurgey A. PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs // Am. J. Hematol. 2002. Vol. 71, No. 2. P. 89–93.

Поступила в редакцию 25.03.2013.

GENETIC POLYMORPHISM OF THROMBOPHILIA IN PATIENTS WITH PULMONARY ARTERY THROMBOEMBOLISM IN PRIMORSKY KRAI

M.F. Kinyaikin^{1, 2}, I.V. Naumova^{1, 2}, E.D. Buyakova², A.V. Bulasheva², E.A. Rozhnova², O.V. Kuraspediani² ¹ Pacific State Medical University (2 Ostryakova Av. Vladivostok 690950 Russian Federation), ² Primorsky Regional Clinical Hospital No. 1 (57 Aleutskaya St. Vladivostok 690091 Russian Federation) Summary - The paper analyses genetic polymorphism of thrombophilia in 68 patients with thromboembolia of the pulmonary artery (PATE) in Pimorsky Krai. The polymorphisms in genes associated with the risk factors for thrombophilia and venous thromboembolic complications was somewhat distinctive in comparison with that of the European population, and, foremost, it was represented by mutations in genes of folate cycle (97.1 % of cases) and disorders related to plasminogen activator inhibitor type 1 gene (88.2 % of cases). The genetic predisposition to hyperaggregation of platelets was recorded in more than half of the patients (55.9%). The synergism of thrombosis risk factors was observed in all PATE cases. These changes shall be allowed for when developing programs for secondary prevention of venous thromboembolic complications. The therapy shall be continuous and likely to last throughout the life, and include drugs known to have effect on different coagulation system components, based upon both laboratory findings that are indicative of haemostatic disorders, and foremost, molecular genetic testing results.

Key words: venous thromboembolic complications, molecular genetic testing, genetic mutations.

Pacific Medical Journal, 2013, No. 4, p. 79-81.