УДК 616.72-002.772-085.357-092.4

ВЛИЯНИЕ КАЛЬЦИТОНИНА НА СОСТОЯНИЕ СОЕДИНИТЕЛЬНОТКАННЫХ СТРУКТУР КРОЛИКОВ С ЭКСПЕРИМЕНТАЛЬНЫМ АРТРИТОМ

С.В. Белова

Саратовский НИИ травматологии и ортопедии (410002, Саратов, ул. Чернышевского, 148)

Ключевые слова: ревматоидный артрит, миокальцик, внутрисуставная терапия.

На экспериментальной модели ревматоидного артрита обоснована возможность внутрисуставной терапии кальцитонином (препарат «Миакальцик») и предложен новый способ, предупреждающий развитие воспалительной деструкции в соединительнотканных структурах коленного сустава (патент РФ № 2269355).

Распространенность ревматоидного артрита (РА) в человеческой популяции доходит до 1%, при этом экономические потери, связанные с данным заболеванием, сопоставимы с потерями от ишемической болезни сердца и злокачественных новообразований [3, 4, 11].

Как известно, характерным проявлением ревматоидного процесса является локальный и системный остеопороз, характеризующийся снижением минеральной плотности кости, а также патологическим изменением качества костной ткани, причем особое значение приобретает состояние субхондральной кости, во многом обеспечивающей метаболические процессы в суставном хряще.

Рентгенологически остеопороз проявляется атрофией субхондральной пограничной пластинки и размытой структурой костной ткани эпифиза. Прогрессирование нарушений ремоделирования костной ткани приводит к тому, что эпифизы пораженного сустава выглядят при рентгенографии прозрачнее, чем в норме [5].

Существует представление, что структурно-метаболическое состояние костной ткани во многом сопряжено с особенностями кальций-фосфорного обмена. Многие авторы рассматривают нарушение ремоделирования костной ткани как показатель тяжести заболевания и активности воспалительного процесса. При РА прогрессирование воспалительно-деструктивных процессов в суставах и костная резорбция находятся в тесной патогенетической взаимосвязи [12, 14].

В настоящее время для лечения остеопороза различной этиологии достаточно широко используется кальцитонин лосося – препарат «Миакальцик», применяемый и в комплексной терапии РА в виде подкожных и внутримышечных инъекций, а также интраназально (спрей) [6, 7]. Учитывая, что ведущими патогенетическими механизмами РА являются воспалительно-деструктивные процессы, в том числе и в субхондральной кости, можно предположить, что при внутрисуставном введении миакальцика

Белова Светлана Вячеславовна – канд. биол. наук, ст.н.с. отдела фундаментальных и клинико-экспериментальных исследований Саратовского НИИТО; e-mail: sarniito_bsv@mail.ru

непосредственное воздействие на суставные ткани повысит эффективность терапии.

Цель исследования – анализ эффективности внутрисуставного воздействия кальцитонина при экспериментальном РА.

Материал и методы. Эксперимент проведен на 40 половозрелых кроликах породы шиншилла русская весом 3–3,7 кг в соответствии со стандартами этического комитета и Хельсинской декларации 1975 г. и ее пересмотра в 1983 г. 10 интактных животных составили контрольную группу. У 30 кроликов путем введения овальбумина в правый коленный сустав был сформирован экспериментальный артрит [13]. 10 из них после этого внутрь коленного сустава вводился 0,9%-ный физиологический раствор (группа сравнения), 20 препарат Miacalcic (Novartis Pharma AG, Швейцария) в дозе 10 МЕ 1 раз в неделю, общим курсом 4 инъекции (опытная группа).

Оценка состояния лабораторных животных осуществлялась при помощи клинических (осмотр, взвешивание, оценка поведения и активности, пальпация и измерение окружности сустава) и лабораторных методов. В крови определялись СОЭ, содержание гемоглобина, лейкоцитов и эритроцитов. Цитологически исследовались уровень общего цитоза и клеточный состав синовиальной жидкости. С помощью биохимических методов вычислялась концентрация общего (Fluitest Ca-CPC, фирма Biocon, Германия) и ионизированного (анализатор Ciba-Corning M 634, Великобритания) кальция, неорганического фосфора (Phosphorus UV FS, DiaSys, Германия). Проводилась оценка метаболизма соединительной ткани по общему содержанию гликозаминогликанов в сыворотке крови и их фракционному составу в синовиальной жидкости. Гистоморфометрическое исследование тканей коленных суставов животных выполнялось после окончания эксперимента.

Клинико-лабораторные исследования проводились в динамике: до моделирования РА, перед началом и после завершения лечения. Выведение животных из эксперимента осуществлялось путем воздушной эмболии через краевую вену уха. Статистическая обработка полученных данных проводилась методом вариационных рядов с вычислением средней арифметической, среднеквадратического отклонения, средней ошибки средней арифметической, коэффициента Стьюдента и показателя вероятности разности.

Результаты исследования. У всех животных опытной группы зарегистрирован синовит правого коленного

сустава с отеком, ограничением движения и повышением местной температуры. Описанные явления были более выражены на 3-4-е сутки после введения разрешающей дозы антигена, при этом наблюдалось максимальное увеличение окружности сустава, в среднем на 10-12 мм. Было обнаружено нарушение метаболизма соединительной ткани, выражавшееся в снижении общего содержания гликозаминогликанов с одновременным нарастанием количества их сульфатированных форм в суставном содержимом и нарастании уровня гликозаминогликанов в сыворотке крови: уровень уроновых кислот – $2,73\pm0,07$ г× $10^{-2}/\pi$ (норма – 1,71 \pm 0,11 г×10⁻²/ π), гексоз – 4,43 \pm 0,07 г \times 10 $^{-2}$ / π (норма – $2,58\pm0,11 \text{ r}\times10^{-2}/\pi$).

При исследовании содержимого полости коленного сустава зарегистрированы цитоз и изменение качественного состава клеточных элементов, при этом наблюдалось значительное повышение количества нейтрофилов, макрофагов, лимфоцитов, а у некоторых животных определялись рагоцитоподобные клетки с типичными включениями в цитоплазме, которые свидетельствовали о местной активности воспалительного процесса [5] (табл. 1). Общая активность воспалительного процесса также была повышена (табл. 2). Параллельно с этим обнаруживались признаки нарушения кальций-фосфорного обмена: повышение уровня кальция на фоне снижения содержания неорганического фосфора в сыворотке крови животных с экспериментальным артритом (табл. 3).

Гистоморфометрически обнару- между группами о жены воспалительно-деструктивные изменения в тканях пораженных суставов. Микроструктура суставного хряща была изменена, имелись небольшие участки с разрыхленным и частично утраченным поверхностным слоем. В этих же местах располагались дистрофически измененные хондроциты. Наиболее выраженным признаком поражения была потеря гликозаминогликанов поверхностной и частично основной зонами суставного хряща, говорившая о деградации его матрикса. Микроскопическое строение субхондральной кости в большинстве случаев нарушалось, выявлялась тенденция к истончению субхондральной костной пластинки и трабекул, свидетельствующая о потере костного вещества.

После внутрисуставного введения миакальцика на фоне улучшения клинической картины и уменьшения

Таблица 1 Общий цитоз и клеточный состав синовиальной жидкости при экспериментальном РА

Показатель	Контроль	Кролики с артритом²		
		до лечения	миакальцик	физ. р-р
Цитоз, 10 ⁹ /л	0,15±0,01	2,18±0,06	0,57±0,05	3,20±0,09
Нейтрофилы, % ¹	9,51±0,11	57,02±0,65	18,34±0,46	54,01±0,35
Лимфоциты, % ¹	8,43±0,09	44,95±0,42	5,39±0,08	53,18±0,51
Макрофаги, %1	0	46,34±0,47	0,95±0,25	55,80±0,61
Рагоциты, %1	0	33,15±0,46	0,85±0,28	36,15±1,10

¹ Частота встречаемости, на поле зрения.

Таблица 2 Гематологические показатели экспериментальных животных

Показатель	Контроль	Кролики с артритом		
		до лечения	миакальцик	физ. р-р
Гемоглобин, г/л	124,30±0,80	120,70±0,20	123,50±0,44	119,02±0,35
Эритроциты, 1012/л	4,04±0,10	3,18±0,04	3,95±0,16	3,27±0,09
Лейкоциты, 10 ⁹ /л	7,60±0,11	11,19±0,11	7,89±0,11	13,50±0,27
П/я нейтрофилы, %	3,96±0,18	6,31±0,49	4,52±0,08	7,38±0,16
С/я нейтрофилы, %	42,60±0,81	53,93±0,46	44,25±0,54	55,08±0,62
Лимфоциты, %	47,80±0,84	32,13±0,37	44,65±0,63	28,15±0,47
Эозинофилы, %	1,49±0,10	2,46±0,06	1,71±0,07	3,22±0,09
Моноциты, %	3,44±0,12	4,49±0,07	3,68±0,08	4,17±0,14

Таблица 3 Показатели кальций-фосфорного обмена у экспериментальных животных

Показатель	Контроль	Кролики с артритом 1		
		до лечения	миакальцик	физ. р-р
Са общ., ммоль/л	2,89±0,02	3,41±0,06	2,80±0,04	3,55±0,09
Са иониз., ммоль/л	1,47±0,01	2,44±0,03	1,67±0,01	2,87±0,01
Р неорг., ммоль/л	2,45±0,13	2,05± 0,19	2,29±0,14	1,79±0,17

¹ Разница по всем показателям для общего и ионизированного кальция между контрольной группой и группой «до лечения», между группами «до лечения» и «миакальцик», а также между группами «миакальцик» и «физ. p-p» статистически значима.

отека сустава отмечались положительные сдвиги в результатах лабораторных анализов. О позитивных сдвигах в метаболизме соединительной ткани свидетельствовала практическая нормализация общего содержания и фракционного состава гликозаминогликанов в содержимом суставной полости. В сыворотке крови также наблюдалось снижение содержания гликозаминогликанов: уроновые кислоты – до $1,93\pm0,06\ r\times10^{-2}/\pi$, гексозы – до $3,30\pm0,10\ r\times10^{-2}/\pi$.

В синовиальной жидкости снижался общий цитоз, реже обнаруживались лимфоциты, эозинофилы и рагоцитоподобные клетки, у интактных животных встречались лишь единичные нейтрофилы и лимфоциты (табл. 1). У больных РА наличие и количество рагоцитов в синовиальной жидкости является одним из

² Здесь и в табл. 2: разница по всем показателям между контрольной группой и группой «до лечения», между группами «до лечения» и «миакальцик», а также между группами «миакальцик» и «физ. p-p» статистически значима.

важных диагностических и прогностических признаков местной воспалительной активности процесса [2, 5]. Общая активность воспалительного процесса также уменьшалась: снижалось СОЭ, в крови увеличивалось количество эритроцитов и содержание гемоглобина, за счет палочко- и сегментоядерных форм уменьшалось количество лейкоцитов (табл. 2). Также наблюдалось улучшение показателей кальций-фосфорного обмена: снижался уровень общего и ионизированного кальция и повышалось содержание неорганического фосфора в сыворотке крови (табл. 3).

Эффективность внутрисуставного применения миакальцика в условиях экспериментального ревматоидного воспаления подтвердил и анализ результатов гистоморфометрического исследования. У животных опытной группы после внутрисуставного введения препарата патологические изменения параартикулярных тканей в виде незначительного утолщения были зафиксированы только в одном случае, когда суставной хрящ имел небольшие шероховатые участки в краевых зонах мыщелков. Патологические изменения костной ткани у этих животных отсутствовали.

У всех животных группы сравнения отмечены значительные патологические изменения: параартикулярные ткани были утолщены и разрыхлены. Суставной хрящ на значительном протяжении был тусклым, зафиксирована порозность суставных поверхностей. У некоторых кроликов по краям наружных мыщелков большеберцовой кости имелись остеофиты, сохранялось истончение субхондральной костной пластинки и трабекул.

Обсуждение полученных данных. Околосуставной остеопороз при РА, проявляющийся атрофией субхондральной пограничной пластинки и размытой структурой костной ткани эпифиза, является ранним рентгенологическим признаком заболевания, выявляющимся уже в первые недели развития суставной патологии. Дальнейшее прогрессирование остеопоретических явлений приводит к тому, что эпифизы пораженного сустава при рентгенографии выглядят более прозрачными, чем в норме [5]. Схожая картина наблюдалась и у кроликов с экспериментальным артритом.

Для коррекции описанных явлений в клинической практике широко используются препараты, модифицирующие метаболизм костной ткани. Одним из таких препаратов является кальцитонин лосося – препарат «Миакальцик». Эффективность применения данного препарата демонстрировали и другие экспериментальные исследования: показано положительное воздействие миакальцика на образование костной мозоли в эксперименте после перелома большеберцовой кости [9], на регенерацию нижней челюсти и восстановление суставного хряща у крыссамок после овариэктомии [8, 15].

Современные данные демонстрируют воздействие кальцитонина лосося как на остеокласты, так и на хондроциты, при этом сделано заключение о его позитивном действии на состояние костной ткани, а также представлено прямое анаболическое действие

на хондроциты, выражающееся в повышенном синтезе гликозаминогликанов, показано тормозящее влияние на деградацию хрящевой ткани [10].

Таким образом, данное исследование демонстрирует положительное влияние кальцитонина на состояние соединительнотканных структур коленных суставов кроликов и позволяет предложить новый способ внутрисуставной терапии экспериментального артрита [1].

Литература

- 1. Белова С.В., Карякина Е.В., Блинникова В.В. Способ лечения ревматоидного артрита. Патент РФ № 2269355, опубл. 19.05.2004.
- 2. Клиническая ревматология: руководство для практических врачей / под ред. В.И. Мазурова. СПб.: Фолиант, 2001. 416 с.
- 3. Насонов Е.Л., Каратеев Д.В., Балабанова Р.М. Ревматоидный артрит // Ревматология: национальное руководство / под ред. В.А. Насоновой. М.: ГЭОТАР-Медиа, 2008. С. 290–331.
- 4. Насонов Е.Л. Перспективы лечения ревматических болезней в начале XXI века // Тер. архив. 2011. Т. 83, № 5. С. 5–9.
- Ревматические болезни: руководство для врачей / под ред.
 В.А. Насоновой, Н.В. Бунчука. М.: Медицина, 1997. 520 с.
- 6. Рубин М.П., Чечурин Р.Е. Диагностика, профилактика и лечение остеопороза в поликлинических условиях // Тер. архив. 2011. № 1. С. 32–38.
- 7. Торопцова Н.В., Михайлов Е.Е., Беневоленская Л.И. Проблема остеопороза в современном мире // Рус. мед. журнал. 2005. Т. 13, № 24 (248). С. 1582–1585.
- Arisawa E.A., Brandão A.A., Almeida J.D., da Rocha R.F. Calcitonin in bone-guided regeneration of mandibles in ovariectomized rats: densitometric, histologic and histomorphometric analysis // Int. J. Oral. Maxillofac. Surg. 2008. Vol. 37 (1). P. 47–53.
- 9. Bulbul M., Esenyel Č.Z., Esenyel M. [et al.] Effects of calcitonin on the biomechanics, histopathology, and radiography of callus formation in rats // J. Orthop. Sci. 2008. Vol. 13 (2). P. 136–144.
- Karsdal M.A., Sondergaard B.C., Arnold M., Christiansen C. Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? // Ann. N. Y. Acad Sci. 2007. Vol. 1117. P. 181–195.
- 11. Klareskog L., Cartina A.I., Paget S. Rheumatoid arthritis // Lancet. 2009. № 374. P. 659–672.
- 12. Park M.K., Her Y.M., Cho M.L. [et al.] IL-15 promotes osteoclastogenesis via the PLD pathway in rheumatoid arthritis // Immunol. Lett. 2011. Vol. 30, № 1–2. P. 42–51.
- 13. Pettipher E.R., Henderson B., Moncada S., Higgs G.A. Leucocyte infiltration and cartilage proteoglycan loss in immune arthritis in the rabbit // Br. J. Pharmacol. 1988. Vol. 95. P. 169–176.
- Shinzawa M., Akiyama T. Regulation of central tolerance by RANKL signaling // Clin. Calcium. 2011. Vol. 21, № 8. P. 1193–1199.
- Sondergaard B.C., Oestergaard S., Christiansen C. [et al.] The effect of oral calcitonin on cartilage turnover and surface erosion in an ovariectomized rat model // Arthritis Rheum. 2007. Vol. 56 (8). P. 2674–2678.

Поступила в редакцию 03.05.2012.

EFFECT OF CALCITONIN ON CONNECTIVE TISSUE IN RABBITS WITH EXPERIMENTAL ARTHRITIS

S. V. Belova

Saratov Research Institute of Traumatology and Orthopedics (148 Chernyishevskogo St. Saratov 410002 Russian Federation)
Summary – The paper provides data for substantiating the possibility of intra-articular therapy with calcitonin (Miacalcic) on the basis of experimental simulation of rheumatoid arthritis. The author offers a new method of preventing inflammatory destruction in the knee joint connective tissues (Russian Federation patent No. 2269355).

Key words: rheumatoid arthritis, miacalcic, intra-articular therapy.

Pacific Medical Journal, 2013, No. 3, p. 38-40.