Analy zing Genomes of Tick-Bone Encephalitis Virus Strains with Various Human Virulence
Abstract
of causing disease of various severities. To identify ties between
the disease severity and the virus genome structure, the authors
have detected full-genome nucleotide sequences of strains derived
from both dead persons (high virulent strains) and persons with no
evident symptoms of the disease (unapparent strains). These two
groups of the virus strains were on the phylogenetic tree in different
clusters. Besides, these groups varied by 19 available group-specific
mutant sites in virus proteins. Four mutations caused considerable
changes in the properties of amino acid residues and, were likely to
be key to identify the pathogenicity of the strain.
About the Authors
С. БеликовRussian Federation
Г. Леонова
Russian Federation
И. Кондратов
Russian Federation
Е. Романова
Russian Federation
Е. Павленко
Russian Federation
S. I. Belikov
Russian Federation
G. N. Leonova
Russian Federation
I. G. Kondratov
Russian Federation
E. V. Romanova
Russian Federation
E. V. Pavlenko
Russian Federation
References
1. Леонова Г.Н., Беликов С.И., Кулакова Н.В. и др. Молекулярное типирование штаммов вируса клещевого энцефалита, выделенных от людей с различной степенью тяжести инфекции на территории юга Дальнего Востока России // Мол. генетика, микробиол. и вирусол. 2004. № 2. С. 32-36.
2. Погодина В.В., Левина Л.С., Карань Л.С. и др. Летальные исходы клещевого энцефалита, вызванного сибирским подтипом возбудителя в европейской части России и на Урале // Мед. вирусол. 2009. Т. XXVI. С. 121-123.
3. Allison S.L., Stiasny K., Stadler C.W. et al. Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E // J. Virol. 1999. Vol. 73. P. 5605-5612.
4. Chambers T.J., Hahn C.S., Galler R., Rice C.M. Flavivirus genome organization, expression, and replication // Ann. Rev. Microbiol. 1990. Vol. 44. P. 649-688.
5. Combet C., Blanchet C., Geourjon C. Deleage G. NPS@:Network Protein Sequence Analysis // TIBS. 2000. Vol. 25, No. 3. P. 147-150.
6. Lobigs, M., Lee, E. Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes // J. Virol. 2004. Vol. 78. P. 178-186.
7. Mandl C.W. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis // Virus Res. 2005. Vol. 111, No. 2. P. 161-174.
8. Rumyantsev A.A., Murphy B.R., Pletnev A.G. A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice // J. Virol. 2006. Vol. 80, No. 3. P. 1427-1439.
9. Van de Peer, Y., De Wachter, R. TREECON: a software package for the construction and drawing of evolutionary trees // Comput. Applic. Biosci. 1993. Vol. 9. P. 177-182.
10. Wallis T.P., Huang C.Y., Nimkar S.B. et. al. Determination of the disulfide bond arrangement of dengue virus NS1 protein // J. Biol. Chem. 2004. Vol. 279, No. 20. P. 20729-20741.
11. Yamshchikov V.F., Compans R.W. Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study // J. Virol. 1994. Vol. 68. P. 5765-5771.
Review
For citations:
, , , , , Belikov S.I., Leonova G.N., Kondratov I.G., Romanova E.V., Pavlenko E.V. Analy zing Genomes of Tick-Bone Encephalitis Virus Strains with Various Human Virulence. Pacific Medical Journal. 2010;(3):23-26. (In Russ.)