DIFFERENTIATION INHIBITION OF NEUTRAL STEM CELLS VIA BIO-POLYMER MATRIX MATERIALS
Abstract
matrix materials being partial structurally-functional analogues
of hyaluronic acid-based glycopolymers. Original modified
polysaccharidic compounds had inhibiting effect on the
capability of neutral stem cells to differentiate. To estimate
cell vitality after cultivation on the substrates under study,
the authors have re-cultivated them under the conditions of
induced adhesion and differentiation. All the studied variants
of glycopolymer matrixes have proved the capability of cells to
differentiate and regular grow under the conditions of neuroinduction
substrate that included dimerous forms of IV type
collagen. One of the materials included modified derivatives
of uronic acids has been recommended as promising matrix
capable of inhibiting undesirable spontaneous differentiation
of neutral stem cells during derivation and conservation of their
biomass needed to create artificial implants of nervous tissue.
About the Authors
В. КумейкоRussian Federation
А. Анисимов
Russian Federation
А. Щеблыкина
Russian Federation
А. Астахова
Russian Federation
Н. Зюмченко
Russian Federation
Н. Токмакова
Russian Federation
И. Кирсанова
Russian Federation
А. Анисимова
Russian Federation
Е. Демиденко
Russian Federation
И. Дюйзен
Russian Federation
М. Хотимченко
Russian Federation
V. V. Kumeiko
Russian Federation
A. P. Anisimov
Russian Federation
A. V. Scheblyikina
Russian Federation
A. A. Astakhova
Russian Federation
N. E. Zyumchenko
Russian Federation
N. P. Tokmakova
Russian Federation
I. A. Kirsanova
Russian Federation
A. A. Anisimova
Russian Federation
E. V. Demidenko
Russian Federation
I. V. Dyuizen
Russian Federation
Yu. S. Khotimchenko
Russian Federation
References
1. Atzei A., Calcagni M., Breda B. et al. Clinical evaluation of a hyaluronan-based gel following microsurgical reconstruction of peripheral nerves of the hand // Microsurgery. 2007. Vol. 27. P. 2-7.
2. Gandhi N.S., Mancera R.L. The Structure of Glycosaminoglycans and their Interactions with Proteins // Chemical Biology and Drug Design. 2008. Vol. 72. P. 455-482.
3. Inoue Y., Yoneda M., Miyaish O. et al. Hyaluronan dynamics during retinal development // Brain Research. 2009. Vol. 1256. P. 55-60.
4. Kataoka K., Suzuki, Y., Kitada, M. et al. Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats // J. Biomed. Mater. Res. 2001. Vol. 54, No. 3. P. 373-384.
5. Novikov L. N., Novikova, L. N., Mosahebi, A. et al. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury // Biomaterials. 2002. Vol. 23, No. 16. P. 3369-3376.
6. Novikova L. N., Mosahebi, A., Wiberg, M. et al. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation// J. Biomed. Mater. Res. 2006. Vol. 77A, No. 2. P. 242-252.
7. Olczyk P., Komosinska-Vassev K., Winsz-Szczotka K. et al. Hyaluronan: Structure, metabolism, functions, and role in wound healing // Postepy Higieny I Medycyny Doswiadczalnej. 2008. Vol. 62. P. 651-659.
8. Pan L.J., Ren Y.J., Cui F.Z. et al. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold // Journal of Neuroscience Research. 2009. Vol. 87. P. 3207-3220.
9. Sasaki N., Okishio, K., Ui-Tei, K. et al. Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells // Journal of Biological Chemistry. 2008. Vol. 283, No. 6. P. 3594-3606.
10. Smit X., van Neck J.W., Afoke A. et al. Reduction of neural adhesions by biodegradable autocrosslinked hyaluronic acid gel after injury of peripheral nerves: an experimental study // Journal of Neurosurgery. 2004. Vol. 101. P. 648-652.
11. Suzuki Y., Kitaura, M., Wu, S. F. et al. Electrophysiological and horseradish peroxidase-tracing studies of nerve regeneration through alginate-filled gap in adult rat spinal cord // Neurosci. Lett. 2002. Vol. 318, No. 3. P. 121-124.
12. Vaccarino F.M., Schwartz M.L., Raballo R. et al. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis // Nat. Neurosci. 1999. Vol. 2. P. 246-253.
13. Wiig H., Gyenge C., Iversen P.O. et al. The role of the extracellular matrix in tissue distribution of macromolecules in normal and pathological tissues: Potential therapeutic consequences // Microcirculation. 2008. Vol. 15. P. 283-296.
14. Yung S., Chan T.M. Glycosaminoglycans and proteoglycans: Overlooked entities? // Peritoneal Dialysis International. 2007. Vol. 27. P. 104-109.
15. Zhang H., Uchimura K., Kadomatsu K. Brain Keratan Sulfate and Glial Scar Formation // Ann. N.Y. Acad. Sci. 2006. Vol. 1086. P. 81-90.
Review
For citations:
, , , , , , , , , , , Kumeiko V.V., Anisimov A.P., Scheblyikina A.V., Astakhova A.A., Zyumchenko N.E., Tokmakova N.P., Kirsanova I.A., Anisimova A.A., Demidenko E.V., Dyuizen I.V., Khotimchenko Yu.S. DIFFERENTIATION INHIBITION OF NEUTRAL STEM CELLS VIA BIO-POLYMER MATRIX MATERIALS. Pacific Medical Journal. 2010;(2):20-26. (In Russ.)