Preview

Pacific Medical Journal

Advanced search

REGULATION OF NEUTRAL STEM CELL GROWTH AND DIFFERENTIATION USING MICROSTRUCTURED NANO-HETEROGENOUS MATRIX MATERIALS

Abstract

The authors present results of studies devoted to the
development of microstructured nano-heterogenous matrix materials
that ensure regulation of cell growth and differentiation
to create artificial tissue implants based upon cell bio-polymer
constructions. To create microstructured matrixes, the authors
have used original bio-polymer compounds of protein and carbohydrate
origin modified and positioned in the compound via
multiport injection spraying unit. Using neutral stem cell cultures
allows demonstrating the capability of one matrix types to
induce directed cell growth and differentiation along the composition
tracks, and of other matrix types - to inhibit differentiation
with cell congregation positioning.

About the Authors

В. Кумейко
Институт биологии моря им. А.В. Жирмунского ДВО РАН; Дальневосточный государственный университет
Russian Federation


Ю. Хотимченко
Институт биологии моря им. А.В. Жирмунского ДВО РАН
Russian Federation


А. Астахова
Институт биологии моря им. А.В. Жирмунского ДВО РАН
Russian Federation


А. Щеблыкина
Институт биологии моря им. А.В. Жирмунского ДВО РАН
Russian Federation


Н. Зюмченко
Дальневосточный государственный университет
Russian Federation


Н. Токмакова
Дальневосточный государственный университет
Russian Federation


А. Анисимова
Дальневосточный государственный университет
Russian Federation


С. Титов
Дальневосточный государственный университет
Russian Federation


Е. Демиденко
Институт биологии моря им. А.В. Жирмунского ДВО РАН
Russian Federation


А. Борейко
Институт биологии моря им. А.В. Жирмунского ДВО РАН
Russian Federation


И. Дюйзен
Институт биологии моря им. А.В. Жирмунского ДВО РАН
Russian Federation


И. Кирсанова
Дальневосточный государственный университет
Russian Federation


А. Анисимов
Дальневосточный государственный университет
Russian Federation


V. V. Kumeiko
Institute of Marine Biology named after A.V. Zhirmundsky, FEB RAS; Far Eastern National University
Russian Federation


Yu. S. Khotimchenko
Institute of Marine Biology named after A.V. Zhirmundsky, FEB RAS
Russian Federation


A. A. Astakhova
Institute of Marine Biology named after A.V. Zhirmundsky, FEB RAS
Russian Federation


A. V. Scheblyikina
Institute of Marine Biology named after A.V. Zhirmundsky, FEB RAS
Russian Federation


N. E. Zyumchenko
Far Eastern National University
Russian Federation


N. P. Tokmakova
Far Eastern National University
Russian Federation


A. A. Anisimova
Far Eastern National University
Russian Federation


S. I. Titov
Far Eastern National University
Russian Federation


E. V. Demidenko
Institute of Marine Biology named after A.V. Zhirmundsky, FEB RAS
Russian Federation


A. A. Boreiko
Institute of Marine Biology named after A.V. Zhirmundsky, FEB RAS
Russian Federation


I. V. Dyuizen
Institute of Marine Biology named after A.V. Zhirmundsky, FEB RAS
Russian Federation


I. A. Kirsanova
Far Eastern National University
Russian Federation


A. P. Anisimov
Far Eastern National University
Russian Federation


References

1. Bradford M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding // Anal. Biochem. 1976. Vol. 72. P. 248-254.

2. Dike L., Chen C., Mrksich M. et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates in vitro // Cell Devel. Biol. - Animal. 1999. No. 25. P. 441-448.

3. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. 1970. Vol. 227, No. 5259. P. 680-685.

4. Nahmias Y., Schwartz R.E., Verfaillie C.M. et al. Laser-guided direct writing for three-dimensional tissue engineering // Biotechnol. Bioeng. 2005. Vol. 92, No. 2. P. 129-136.

5. Nelson C.M., Tien J. Microstructured extracellular matrices in tissue engineering and development // Current Opinion in Biotechnology. 2006. No. 17. P. 518-523.

6. Nisbet D.R., Crompton K.E., Horne M.K. et al. Neural tissue engineering of the CNS using hydrogels // Journal of Biomedical Materials Research, Part B: Applied Biomaterials. 2008. No. 87B. P. 251-263.

7. Odde D.J., Renn M.J. Laser-guided direct writing of living cells // Biotechnol. Bioeng. 2000. Vol. 67, No. 3. P. 312-318.

8. Perris R., Syfrig J., Paulsson M., Bronnerfraser M. Molecular Mechanisms of Neural Crest Cell Attachment and Migration on Type-I and Type-Iv Collagen // Journal of Cell Science. 1993. Vol. 106. P. 1357-1368.

9. Phillippi J.A., Miller E., Weiss L. et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations // Stem Cells. 2008. No. 26. P. 127-134.

10. Tang M.D, Golden A.P., Tien J. Molding of three-dimensional microstructures of gels // J. Am. Chem. Soc. 2003. No. 125. P. 12988-12989.

11. Tien J., Nelson C.M., Chen C.S. Fabrication of aligned microstructures with a single elastomeric stamp // PNAS. 2002. Vol. 99, No. 4. P. 1758-1762.

12. Whitesides G.M., Ostuni E., Takayama S. Soft lithography in biology and biochemistry // Annu. Rev. Biomed. 2001. No. 3. P. 335-373.

13. Ytzhaki R.F., Gill D.M. A micro-biuret method for estimating proteins // Analyt. Biochem. 1964. Vol. 9. P. 401-407.


Review

For citations:


 ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , Kumeiko V.V., Khotimchenko Yu.S., Astakhova A.A., Scheblyikina A.V., Zyumchenko N.E., Tokmakova N.P., Anisimova A.A., Titov S.I., Demidenko E.V., Boreiko A.A., Dyuizen I.V., Kirsanova I.A., Anisimov A.P. REGULATION OF NEUTRAL STEM CELL GROWTH AND DIFFERENTIATION USING MICROSTRUCTURED NANO-HETEROGENOUS MATRIX MATERIALS. Pacific Medical Journal. 2010;(2):26-31. (In Russ.)

Views: 194


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)