Preview

Pacific Medical Journal

Advanced search

Molecular subtypes of osteoarthritis

https://doi.org/10.17238/PmJ1609-1175.2017.4.40-44

Abstract

Objective. The study objective is to evaluate the clinical and pathogenetic relationships of the inflammatory, oxidative and mixed molecular subtypes / endotypes of osteoarthritis. Methods. 65 patients with osteoarthritis of knee joints were examined: 8 men and 57 women, average age - 66.7 years, duration of the disease from 1 to 18 years. For the purpose of molecular phenotyping, the concentrations of interleukin-1 ß and oxidative-induced growth inhibitor-1 were determined in the blood serum and phenotypes of the osteoarthritis: inflammatory, oxidative and mixed were isolated. Results. Inflammatory endotypes occurred in 9, oxidative - in 28 and mixed - in 28 cases. The pain level, measured from the visual analogue scale, was the lowest in individuals with an inflammatory molecular subtype of the osteoarthritis. The overall score for the WOMAC questionnaire was significantly higher in patients with a mixed endotypes of the disease. The concentration of cartilage-associated protein was significantly lower in patients with inflammatory and oxidative molecular subtypes of osteoarthritis. The level of the Fas-ligand was significantly lower in the inflammatory subtype, and the level of endothelin-1 was lower in the oxidative subtype of the disease. The growth factor/differentiation-5 concentration was significantly higher in the group with the inflammatory osteoarthritis phenotype. Conclusions. The osteoarthritis is a heterogeneous disease; the variety of its manifestations depends on the molecular-transcriptom mechanisms and ways of responding to stress. Endotyping patients with osteoarthritis on molecular basis is justified from the clinical and pathogenetic point of view. Thus, the data obtained by us on the clinical and pathogenetic features of various molecular phenotypes of the osteoarthritis can form the basis of a personified approach in this disease.

About the Authors

M. A. Kabalyk
Pacific State Medical University
Russian Federation


S. V. Gnedenkov
Institute of Chemistry of the FEB RAS
Russian Federation


T. S. Kovalenko
Pacific State Medical University
Russian Federation


A. A. Sinenko
Pacific State Medical University
Russian Federation


L. M. Moldovanova
Pacific State Medical University
Russian Federation


References

1. Алексеева Л.И., Цветкова Е.С. Остеоартроз: из прошлого в будущее // Научно-практическая ревматология. 2009. Прил. 2. С. 31-37

2. Зайцева Е.М., Алексеева Л.И. Причины боли при остеоартрозе и факторы прогрессирования заболевания // Научно-практическая ревматология. 2011. № 1. С. 50-57

3. Мустафин РН., Хуснутдинова Э.К. Аваскулярный некроз головки бедренной кости // Тихоокеанский медицинский журнал. 2017. № 1. С. 27-35

4. Ahmad R., Sylvester J., Ahmad M., Zafarullah M. Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes // Arch. Biochem. Biophys. 2011. Vol. 507, No. 2. P. 350-355.

5. Dalen S.C., Blom A.B., Slöetjes A.W. [et al.]. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis // Osteoarthritis Cartilage. 2017. Vol. 25, No. 3. P. 385-396.

6. Deveza L.A., Melo L., Yamato T.P. [et al.]. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review // Osteoarthritis Cartilage. 2017. Vol. 25, No. 9. P 452-456.

7. Kraus V.B., Blanco F.J., Englund M. [et al.]. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use // Osteoarthritis Cartilage. 2015. Vol. 23, No. 8. P. 1233-1241.

8. Loeser R.F. The role of aging in the development of osteoarthritis // Trans. Am. Clin. Climatol. Assoc. 2017. No. 128. P. 44-54.

9. Loeser R.F., Gandhi U., Long D.L. [et al.]. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1 // Arthritis Rheumatol. 2014. Vol. 66, No. 8. P 2201-2209.

10. Mobasheri A., Bay-Jensen A.C., van Spil W.E. [et al.]. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers) // Osteoarthritis Cartilage. 2017. Vol. 25, No. 2. P. 199-208.

11. Münzel T., Camici G.G., Maack C. [et al.]. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series // J. Am. Coll. Cardiol. 2017. Vol. 70, No. 2. P. 212-229.

12. Pan T., Chen R., Wu D. [et al.]. Alpha-Mangostin suppresses interleukin-1ß-induced apoptosis in rat chondrocytes by inhibiting the NF-kB signaling pathway and delays the progression of osteoarthritis in a rat model // Int. Immunopharmacol. 2017. No. 52. P. 156-162.

13. Steinberg J., Ritchie G.R.S., Roumeliotis T.I. [et al.]. Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis // Sci. Rep. 2017. Vol. 7, No. 1. P. 8935.

14. Vila S. Inflammation in osteoarthritis // P R. Health Sci. J. 2017. Vol. 36, No. 3. P. 123-129.

15. Yin W., Park J.I., Loeser R.F. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways // J. Biol. Chem. 2009. Vol. 284, No. 46. P. 31972-31981.

16. osteoarthritis, phenotype, inflammation, oxidative stress


Review

For citations:


Kabalyk M.A., Gnedenkov S.V., Kovalenko T.S., Sinenko A.A., Moldovanova L.M. Molecular subtypes of osteoarthritis. Pacific Medical Journal. 2017;(4):40-44. (In Russ.) https://doi.org/10.17238/PmJ1609-1175.2017.4.40-44

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)