Molecular subtypes of osteoarthritis
https://doi.org/10.17238/PmJ1609-1175.2017.4.40-44
Abstract
About the Authors
M. A. KabalykRussian Federation
S. V. Gnedenkov
Russian Federation
T. S. Kovalenko
Russian Federation
A. A. Sinenko
Russian Federation
L. M. Moldovanova
Russian Federation
References
1. Алексеева Л.И., Цветкова Е.С. Остеоартроз: из прошлого в будущее // Научно-практическая ревматология. 2009. Прил. 2. С. 31-37
2. Зайцева Е.М., Алексеева Л.И. Причины боли при остеоартрозе и факторы прогрессирования заболевания // Научно-практическая ревматология. 2011. № 1. С. 50-57
3. Мустафин РН., Хуснутдинова Э.К. Аваскулярный некроз головки бедренной кости // Тихоокеанский медицинский журнал. 2017. № 1. С. 27-35
4. Ahmad R., Sylvester J., Ahmad M., Zafarullah M. Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes // Arch. Biochem. Biophys. 2011. Vol. 507, No. 2. P. 350-355.
5. Dalen S.C., Blom A.B., Slöetjes A.W. [et al.]. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis // Osteoarthritis Cartilage. 2017. Vol. 25, No. 3. P. 385-396.
6. Deveza L.A., Melo L., Yamato T.P. [et al.]. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review // Osteoarthritis Cartilage. 2017. Vol. 25, No. 9. P 452-456.
7. Kraus V.B., Blanco F.J., Englund M. [et al.]. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use // Osteoarthritis Cartilage. 2015. Vol. 23, No. 8. P. 1233-1241.
8. Loeser R.F. The role of aging in the development of osteoarthritis // Trans. Am. Clin. Climatol. Assoc. 2017. No. 128. P. 44-54.
9. Loeser R.F., Gandhi U., Long D.L. [et al.]. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1 // Arthritis Rheumatol. 2014. Vol. 66, No. 8. P 2201-2209.
10. Mobasheri A., Bay-Jensen A.C., van Spil W.E. [et al.]. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers) // Osteoarthritis Cartilage. 2017. Vol. 25, No. 2. P. 199-208.
11. Münzel T., Camici G.G., Maack C. [et al.]. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series // J. Am. Coll. Cardiol. 2017. Vol. 70, No. 2. P. 212-229.
12. Pan T., Chen R., Wu D. [et al.]. Alpha-Mangostin suppresses interleukin-1ß-induced apoptosis in rat chondrocytes by inhibiting the NF-kB signaling pathway and delays the progression of osteoarthritis in a rat model // Int. Immunopharmacol. 2017. No. 52. P. 156-162.
13. Steinberg J., Ritchie G.R.S., Roumeliotis T.I. [et al.]. Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis // Sci. Rep. 2017. Vol. 7, No. 1. P. 8935.
14. Vila S. Inflammation in osteoarthritis // P R. Health Sci. J. 2017. Vol. 36, No. 3. P. 123-129.
15. Yin W., Park J.I., Loeser R.F. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways // J. Biol. Chem. 2009. Vol. 284, No. 46. P. 31972-31981.
16. osteoarthritis, phenotype, inflammation, oxidative stress
Review
For citations:
Kabalyk M.A., Gnedenkov S.V., Kovalenko T.S., Sinenko A.A., Moldovanova L.M. Molecular subtypes of osteoarthritis. Pacific Medical Journal. 2017;(4):40-44. (In Russ.) https://doi.org/10.17238/PmJ1609-1175.2017.4.40-44