Preview

Pacific Medical Journal

Advanced search

Respiratory and muscular dysfunction of the respiratory muscles and chronic obstructive pulmonary disease: pathophysiological relationships and clinical significance

https://doi.org/10.34215/1609-1175-2022-1-17-25

Abstract

The review presents literature data on the problem of respiratory muscle (RM) dysfunction in patients with chronic obstructive pulmonary disease (COPD). The main features of their pathophysiological interactions and clinical practice values were observed. Both local and systemic factors of the pathogenesis of COPD are important in the development of RM dysfunction. Local factors are associated with lung remodeling and the need of RM to overcome excessive breathing resistance, which increases the intensity of their work, and contributes to the development of hypertrophy and insufficiency. Chronic systemic inflammation, oxidative stress, excessive proteolysis and other systemic manifestations of COPD change the metabolism, structural and functional organization of RM. The severity of morpho-functional disorders and metabolic status of RM depends on the gravity of COPD and emerges on the early stages as myocytes’ hypertrophy, their increasing capillarization and the increasing of mitochondrion density. At late stages it appears as diffuse replacement of muscle fibers by connective tissue. Low nutritional status, increasing protein-energy deficiency, electrolyte imbalance, endocrine disorders on the background of progressive respiratory insufficiency and tissue hypoxia contribute to the development of RM weakness. The combination of COPD, acute disorders of cerebral circulation and chronic heart failure sharply worsens the function of RM and the prognosis of comorbid diseases. Also, the dysfunction of RM in patients having COPD is significantly aggravated at the age of senility. The review discusses the possibilities of pharmacological correction of RM dysfunction and other clinical aspects of this problem.

About the Authors

B. I. Geltser
Far Eastern Federal University, School of Biomedicine
Russian Federation

Boris I. Geltser - MD, PhD, prof., Corresponding Member of the Russian Academy of Sciences, Deputy Director for Science.

690922, Primorsky Krai, Vladivostok, Russian Island, Ajax, 10; tel.: +7 (423) 265-24-24 (ext. 2115



V. N. Kotelnikov
Far Eastern Federal University, School of Biomedicine; Pacific State Medical University
Russian Federation

Vladimir N. Kotelnikov - MD, PhD, professor. Head of the Chair of Disaster Medicine and Life Safety of the Pacific MU, prof. of the Department of Clinical Medicine, School of Medicine of the Far Eastern F.U.

690002, Vladivostok, Ostryakova Ave., 2; 690922, Primorsky Krai, Vladivostok, Russian Island, Ajax, 10; тел.: +7 (423) 245-17-83



A. G. Kozhanov
Far Eastern Federal University, School of Biomedicine
Russian Federation

Aleksey G Kozhanov - Postgraduate student of the Department of Clinical Medicine.

690922, Primorsky Krai, Vladivostok, Russian Island, Ajax, 10; tel.: +7 (423) 265-24-24 (ext. 2116)



References

1. O’Donnell D.E., Laveneziana P., Webb K., Neder J.A. Chronic obstructive pulmonary disease: clinical integrative physiology. Clin. chest med. 2014; 35(1): 51–69.

2. Divert V.E., Krivoshchekov S.G. Cardiorespiratory reactions with increasing normobaric inhalation hypoxia in a healthy person. Physiol. a person. 2013; 39(4): 82–92. (In Russ.)

3. Motavkin P.A., Geltser B.I. Clinical and experimental pathophysiology of the lungs. – Moscow: Nauka, 1998 – 365 p. (In Russ.)

4. Lumb A.B. Nunn's applied respiratory physiology ebook. Elsevier Health Sci. 2016; 543.

5. Alexandrova N.P. Cytokines and resistive respiration. Physiol. a person. 2012; 38(2): 119–129 (In Russ.)

6. Kurpatov I.G., Geltser B.I., Kotelnikov V.N., Kinyakin M.F. Functional status of respiratory muscles in patients with chronic obstructive pulmonary disease. Tuberculosis and lung diseases. 2021; 99 (6):15–21. (In Russ.)

7. Chuchalin A.G., Aisanov Z.R. Respiratory muscle dysfunction in chronic obstructive pulmonary diseases. Therapist. arch. 1988; 60 (7): 126–131. (In Russ.)

8. Fernandes M., Cukier A., Ambrosino N., Leite J., Zanetti M. Respiratory pattern, thoracoabdominal motion and ventilation in chronic airway obstruction. Monaldi Arch. Chest Disease. 2016; 67(4): 7–21.

9. Sieck G.C., Ferreira L.F., Reid M.B., Mantilla C.B. Mechanical properties of respiratory muscles. Comprehensive Physiol. 2013; 3: 1553–1567.

10. Avdeev S.N. Assessment of the strength of the respiratory muscles in clinical practice. Practical pulmonology. 2008; 4: 2–17. (In Russ.)

11. Geltser B.I., Kurpatov I.G., Day A.A., Kozhanov A.G. Respiratory muscle dysfunction and respiratory diseases Therapeutic Archive. 2019; 91 (3): 93–100 (In Russ.)

12. Shvaiko S.N. The clinical significance of the diagnosis of respiratory muscle dysfunction in patients with chronic obstructive pulmonary disease and chronic heart failure. Russian medical and biological bulletin them. I.P. Pavlova. 2006; 4: 69–74. (in Russ.)

13. Talbot J., Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdisciplinary Rev.: Dev. Biol. 2016; 5(4): 518–534.

14. Frontera W.R., Ochala J. Skeletal muscle: a brief review of structure and function. Calcified tissue int. 2015; 96(3): 183–195.

15. Ciciliot S., Rossi A.C., Dyar K.A., Blaauw B., Schiaffino S.. Muscle type and fiber type specificity in muscle wasting. Int. J. Biochem. Cell Biol. 2013; 45(10): 2191–2199.

16. Gea J., Agustí A., Roca J. Pathophysiology of muscle dysfunction in COPD. J. Appl. Physiol. 2013; 114(9): 1222–1234.

17. Hooijman P.E. Brusselle G.G., Wit Ch. et al. Diaphragm muscle fiber weakness and ubiquitin–proteasome activation in critically ill patients. Amer. J. Respir. Crit. Care Med. 2015; 191(10): 1126– 1138. Beishuizen A., Witt Ch.C., Waard M.C., Girbes A.R.J., Spoelstra-de Man A.M.E., Niessen H.W.M., Manders E., Hees H.W.H., Brom Ch.E., Silderhuis V., Lawlor M.W., Labeit S., Stienen G.J.M., Hartemink K.J., Paul M.A., Heunks L.M.A., Ottenheijm C.A.C.

18. Mantilla C.B., Sieck G.C. Impact of diaphragm muscle fiber atrophy on neuromotor control. Respir. Physiol. Neurobiol. 2013; 189(2): 411–418.

19. Cancelliero-Gaiad K.M., Lke D., Pantoni C.B., Borghi-Silva A., Costa D. Respiratory pattern of diaphragmatic breathing and pilates breathing in COPD subjects. Brazilian J. Phys. Ther. 2014; 18(4): 291–299.

20. Filippova L.V., Nozdrachev A.D. An overview of the Pulmonary Sensory Receptors. Adv. Physic. Sci. 2013; 44(3): 93–112. (in Russ.)

21. Evaluation of nutritional status and nutritional therapy in chronic obstructive pulmonary disease. Russ. Pulmonology. 2016; 26(1): 13–28. (In Russ.)

22. Barreiro E., Gea J. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease. Chronic Respir. Disease. 2016; 13(3): 297–311.

23. Geltser B.I., Shakhgeldyan K.I., Kurpatov I.G., Kotelnikov V.N. Comparative assessment of the strength of the respiratory muscles in patients with bronchial asthma, chronic obstructive pulmonary disease and their combination. Tuberculosis and lung diseases. 2019; 97 (2): 12–29. (In Russ.)

24. Fermoselle C., Rabinovich R., Ausin P., Puig-Vilanova E., Coronell C., Sanchez F., Roca J., Gea J., Barreiro E.. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur. Respir. J. 2012; 40(4): 851–862.

25. Clanton T.L., Levine S. Respiratory muscle fiber remodeling in chronic hyperinflation: dysfunction or adaptation? J, Appl. Physiol. 2009; 107(1): 324–335.

26. Mathur S., Brooks D., Carvalho C.R.. Structural alterations of skeletal muscle in copd. Frontiers Physiol. 2014; 5(104): 1–8.

27. Vertkin A.L. A comorbid patient. Manual for Practitioners. Moscow. EKSMO. 2017; 150. (in Russ.)

28. Kalinina E.P., Geltser B.I., Kurbatov I.V., Gorborukova T.V., Gvozdenko T.A. Assessment of the role of cytokine-mediated mechanisms in the development of respiratory muscle dysfunction in patients with chronic obstructive pulmonary disease. Medical immunology. 2019; 21 (3): 487-494. (in Russ.)

29. Remels A., Gosker H.D., Schols A.M. The mechanisms of cachexia underlying muscle dysfunction in COPD. J. Appl. Physiol. 2013; 114(9): 1253–1262.

30. Haizlip K.M., Harrison B.C., Leinwand L.A. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiol. 2015; 30(1): 30–39.

31. Doyle A., Zhang G., Abdel Fattah E.A., Eissa N.T., Li Y.-P. Tolllike receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 2011; 25(1): 99–110.

32. Langen R.C., Haegens A., Vernooy J.H., Wouters E.F.M., Winther M.P.J., Carlsen H., Steele Ch., Shoelson S.E., Schols A.M.W.J. NF-κB activation is required for the transition of pulmonary inflammation to muscle atrophy. Amer. J. Respir. Cell Mol. Biol. 2012; 47(3): 288–297.

33. Ghelardini C, Mannelli L.D., Bianchi E. The pharmacological basis of opioids. Clin. Cases Mineral and Bone Metab. 2015; 12(3): 219–221.

34. Hussain S.N., Sandri M. Role of autophagy in COPD skeletal muscle dysfunction. J. Appl. Physiol. 2013; 114(9): 1273–1281.

35. Jiang X.L., He Z.J., Xi H.H., Zhi Z. The relationship between nutritional status and oxidative stress markers, pulmonary function in patients with stable chronic obstructive pulmonary disease. Chin. J. Tuberculosis Respir. Diseases. 2017; 40(1): 40–45.

36. Vernooy J.H., Ubags N.D., Brusselle G.G., Tavernier J., Suratt B.T., Joos G.F., Wouters E.F.M., Bracke K.R.. Leptin as regulator of pulmonary immune responses: involvement in respiratory diseases. Pulm Pharmacol Ther. 2013: 26(4): 464–472.

37. Liang R., Zhang W., Song Y.M. Levels of leptin and IL-6 in lungs and blood are associated with the severity of chronic obstructive pulmonary disease in patients and rat models. Mol Med Rep. 2013; 7(5): 1470–1476.

38. Miki K., Maekura R., Nagaya M., Miki M., Kitada S., Yoshimura K., Mori M., Kangawa K.. Effects of ghrelin treatment on exertional dyspnea in COPD: an exploratory analysis. J. Physiol Sci. 2015; 65(3): 277–284.

39. Chikani V., Ho K.K.Y. Action of GH on skeletal muscle function: molecular and metabolic mechanisms. J. Mol. Endocrinol. 2014; 52(1): 107–123.

40. Lütkecosmann S., Warsinke A., Tschöpe W., Eichler R., Hanack K. 3 et al. A novel monoclonal antibody suitable for the detection of leukotriene B4. BBRC. 2017; 482(4): 1054–1059.

41. Cojocaru C., Turkanu A., Mihaesku T., Cojocaeu E. A biological perspective for the management of chronic obstructive pulmonary disease by testosterone. Arch. Biol. Sci. 2015; 67(1): 257–259.

42. Terzano C., Romani S., Paone G., Conti V., Oriolo F.. COPD and thyroid dysfunctions. Lung. 2014; 192(1): 103–109.

43. Takeuchi S., Kitamura T., Ohbuchi T., Koizumi H., Takahashi R., Hohchi N., Suzuki H. Relationship between sleep apnea and thyroid function. Sleep and Breathing. 2015; 19(1): 85–89.

44. Sukhanova G.I., Kinyaikin M.F., Rassokhina N.Yu., Kramar A.V. Role of hypoxemia in formation of upper limb muscle dysfunction in case of chronic obstructive lung disease. Pacific Med. J. 2012; 1(47): 90–92. (in Russ.)

45. Kurpatov I.G., Geltser B.I., Kinyakin M.F. Results of assessment of respiratory muscle strength in patients with various comorbidity variants of chronic obstructive pulmonary disease. Therapeutic Archive. 2020; 92(3): 7–12 (in Russ.)

46. Geltser B.I., Kurpatov I.G., Day A.A., Kozhanov A.G. Assessment of the strength of the respiratory muscles at various stages of ischemic stroke. Journal of Neurology and Psychiatry named after C.C. Korsakov. 2019; 119 (2–3): 83-88 (in Russ.)

47. Dimitriadis Z., Kapreli E., Konstantinidou I., Oldham J., Strimpakos N. Test/retest reliability of maximum mouth pressure measurements with the MicroRPM in healthy volunteers. Resp. Care. 2011; 56(6): 776–782.

48. Aleksandrov A.L., Gichkin A.Yu., Perlej V.E., Surkova E.G. Discriminant functions to assess the functional state of the diaphragm in patients with chronic obstructive pulmonary disease using ultrasound. Science and education in a modern competitive environment. 2015; 1 (2): 13–16. (in Russ.)

49. Barreiro E., Bustamante V., Cejudo P., Gáldiz J.B., Gea J., Lucas P., Martínez-Llorens J., Ortega F., Puente-Maestu L., Roca J., Moro J.M. R.-G. Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease. Arch. Bronconeumol. 2015; 51(8): 384–395.

50. Fisenko A. Yu., Chernikov A.V., Kuz`menko D.I., Sanzharovskaya M.S., Chernogoryuk G.E`. Correction of skeletal muscle dysfunction with a fast metabolic mitochondrial cluster stimulator in the treatment of exacerbations of severe chronic obstructive pulmonary disease. Modern problems of science and education. 2012; 4: 46 (in Russ.)


Review

For citations:


Geltser B.I., Kotelnikov V.N., Kozhanov A.G. Respiratory and muscular dysfunction of the respiratory muscles and chronic obstructive pulmonary disease: pathophysiological relationships and clinical significance. Pacific Medical Journal. 2022;(1):17-25. (In Russ.) https://doi.org/10.34215/1609-1175-2022-1-17-25

Views: 534


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)