Preview

Тихоокеанский медицинский журнал

Расширенный поиск

Вирусные векторы в трансгенных исследованиях: перспективы использования для лечения болезней ЦНС и генной терапии

https://doi.org/10.34215/1609-1175-2022-1-46-55

Полный текст:

Аннотация

Вирусные переносчики представляют большой клинический интерес из-за их высокой эффективности, позволяющей находить практическое применение в генной терапии. В обзоре приводятся современные данные исследований на различных видах рыб в качестве потенциальных моделей для использования вирусных векторов. В ходе изучения высокопроизводительных аденовирусных векторов получены данные об устойчивой экспрессии трансгенов в организме Danio rerio и других видов рыб. Рассмотрены особенности применения аденоассоциированных векторов в исследовании транснейронального переноса белка глюкоронидазы в проекционных нейронах вентральной тегментальной области и стриатума для лечения метаболической недостаточности при мукополисахаридозе VII. Принимая во внимание широкий репертуар генетически модифицированных линий Danio rerio, этические аспекты и допустимость этой модели в нейрогеннных исследованиях, очевидно, что Danio rerio, как и другие виды рыб, могут быть альтернативой для ранней стадии доклинической оценки эффективности вирусных векторов.

Об авторах

Е. В. Пущина
Национальный научный центр морской биологии им. А.В. Жирмунского, Дальневосточное отделение Российской академии
Россия

Пущина Евгения Владиславовна – доктор биологических наук, профессор РАН, главный научный сотрудник лаборатории Клеточной дифференциации.

690041, Владивосток, ул. Пальчевского, 17; тел.: +79990400751



И. А. Капустянов
Национальный научный центр морской биологии им. А.В. Жирмунского, Дальневосточное отделение Российской академии
Россия

Капустянов Илья Александрович - аспирант лаборатории Клеточной дифференциации.

690041, Владивосток, ул. Пальчевского, 17, тел.: +79020521267



А. А. Вараксин
Национальный научный центр морской биологии им. А.В. Жирмунского, Дальневосточное отделение Российской академии
Россия

Вараксин Анатолий Алексеевич - доктор биологических наук, профессор, ведущий научный сотрудник лаборатории Клеточной дифференциации

690041, Владивосток, ул. Пальчевского, 17, тел.: +79146723560



Список литературы

1. dos Santos Coura R., Beyer Nardi N. A role for adeno-associated viral vectors in gene therapy. Gen. Mol. Biol. 2008; 31: 1–11.

2. Haery L., Deverman B.E., Matho K.S., Cetin A., Woodard K., Cepko C., Guerin K.I., Rego M.A., Ersing I., Bachle S.M., Kamens J., Fan M. Adeno-associated virus technologies and methods for targeted neuronal manipulation. Front. Neuroanat. 2019; 13: 93.

3. Ricobaraza A., Gonzalez-Aparicio M., Mora-Jimenez L., Lumbreras S., Hernandez-Alcoceba R. High-capacity adenoviral vectors: expanding the scope of gene therapy. Int. J. Mol. Sci. 2020; 21: 3643.

4. Bopegamage, S., Berakova, K., Gomocak, P., Baksova, R., Galama, J., Hyoty, H., Tauriainen, S. Primary Site of Coxsackievirus B Replication in the Small Intestines: No Proof of Peyer’s Patches Involvement. Microorganisms. 2021; 9: 2600.

5. Ohbayashi F., Balamotis M.A., Kishimoto A., Aizawa E., Diaz A., Hasty P. Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors. Proc. Natl. Acad. Sci. USA. 2005; 102: 13628– 13633.

6. Suzuki K., Mitsui K., Aizawa E., Hasegawa K., Kawase E., Yamagishi T. Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helperdependent adenoviral vectors. Proc. Natl. Acad. Sci. USA. 2008; 105: 13781–13786.

7. Chamberlain J.R., Schwarze U., Wang P.R., Hirata R.K., Hankenson K.D., Pace J.M. Gene targeting in stem cells from individuals with osteogenesis imperfect. Science. 2004; 303: 1198–1201.

8. Kurita K., Burgess S.M., Sakai N. Transgenic zebrafish produced by retroviral infection of in vitro-cultured sperm. Proc. Natl. Acad. Sci. USA. 2004; 101:1263–1267.

9. Lee K-Y., Huang H., Ju B., Yang Z., Lin S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat. Biotechnol. 2002; 20:795–799.

10. Hong Y., Liu T., Zhao H., Xu H., Wang W., Liu R. Establishment of a normal medaka fish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA. 2004;101:8011–8016.

11. Gulías P., Guerra-Varela J., Gonzalez-Aparicio M., Ricobaraza A., Vales A., Gonzalez-Aseguinolaza G., Hernandez-Alcoceba R., Sánchez L. Danio rerio as model organism for adenoviral vector evaluation. Genes. 2019; 10:1053.

12. Furutani-Seiki M., Wittbrodt J. Medaka and zebrafish, an evolutionary twin study. Mech. Dev. 2004;121:629–637.

13. Wakamatsu Y., Ju B., Pristyaznhyuk I., Niwa K., Ladygina T., Kinoshita M. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc. Natl. Acad. Sci. USA. 2001; 98:1071–1076.

14. Kawasaki T., Saito K., Mitsui K., Ikawa M., Yamashita M., Taniguchi Y., Takeda S., Mitani K., Sakai N. Introduction of a foreign gene into zebrafish and medaka cells using adenoviral vectors. Zebrafish. 2009;6:553–558.

15. Takehashi M., Kanatsu-Shinohara M., Inoue K., Ogonuki N., Miki H., Toyokuni S., Ogura A., Shinohara T. Adenovirusmediated gene delivery into mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA. 2007;104:2596–2601

16. Mirow M, Schwarze LI, Fehse B, Riecken K. Efficient Pseudotyping of Different Retroviral Vectors Using a Novel, Codon-Optimized Gene for Chimeric GALV Envelope. Viruses. 2021;13(8):1471.

17. Amsterdam A., Hopkins N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trend. Genet. 2006;22:473–478.

18. Harrold, I., Carbonneau, S., Moore, B.M., Nguyen, G., Anderson, N.M., Saini, A.S., Kanki, J.P., Jette, C.A., & Feng, H. Efficient transgenesis mediated by pigmentation rescue in zebrafish. BioTechniques, 2016; 60(1), 13–20.

19. Overturf K., LaPatra S., Reynolds P.N. The effectiveness of adenoviral vectors to deliver and express genes in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish. Dis. 2003;26:91-101.

20. Watanabe S., Kanatsu-Shinohara M., Ogonuki N., Matoba S., Ogura A., Shinohara T. In Vivo Genetic Manipulation of Spermatogonial Stem Cells and Their Microenvironment by Adeno-Associated Viruses. Stem Cell Reports. 2018. Vol. 10 (5), 1551-1564.

21. Kojima Y., Hayashi Y., Kurokawa S., Mizuno K., Sasaki S., Kohri K. No evidence of germ-line transmission by adenovirus-mediated gene transfer to mouse testes. Fertil. Steril. 2008;89:1448–1454.

22. Kanatsu-Shinohara M., Ogura A., Ikegawa M., Inoue K., Ogonuki N., Tashiro K. et al. Adenovirus-mediated gene delivery and in vitro microinsemination produce offspring from infertile male mice. Proc. Natl. Acad. Sci. USA. 2002;99:1383–1388.

23. Wagle M., Jesuthasan S. Baculovirus-mediated gene expression in zebrafish. Mar. Biotechnol. 2003;5:58-63.

24. Yan Y., Du J., Chen T., Yi M., Li M., Wang., Li C.M., Hong Y. Establishment of medaka fish as a model for stem cell-based gene therapy: efficient gene delivery and potential chromosomal integration by baculoviral vectors. Exp. Cell. Res. 2009;315:2322– 2331.

25. Brunetti-Pierri N., Ng T., Iannitti D., Cioffi W., Stapleton G., Law M., Breinholt J. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum. Gene Ther. 2013;24:761–765.

26. Crustal R. Adenovirus: The first effective in vivo gene delivery vector. Hum. Gene Ther. 2014;25:3-11.

27. Russell W.C. Update on adenovirus and its vectors. J. Gen. Virol. 2000;81:2573-2604.

28. Lundstrom K. Viral vectors in gene therapy. Diseases. 2018;6:42.

29. Wang L., Li F., Dang L., Liang C., He B., Liu J. In vivo delivery systems for therapeutic genome editing. Int. J. Mol. Sci. 2016;17:626.

30. Hashimoto M., Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the «birth date» of Purkinje cells. J. Neurosci. 2003;23:11342–11351.

31. Cwetsch A.W., Pinto B., Savardi A., Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol. 2018; 168: 69-85.

32. Barcia C., Jimenez-Dalmaroni M., Kroeger K., Puntel M., Rapaport A., Larocque D., King G. One-year expression from high-capacity adenoviral vectors in the brains of animals with pre-existing anti-adenoviral immunity: Clinical implications. Mol. Gene Ther. 2007;15:2154–2163.

33. Hashimoto M., Mikoshiba K. Neuronal birthdate-specific gene transfer with adenoviral vectors. J. Neurosci. 2004;24:286–296.

34. Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol. 2021; 19(1) :174.

35. Cearley C.N., Wolfe J.H. Transduction characteristics of adenoassociated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol. Ther. 2006;13:528–537.

36. Burger C., Gorbatyuk O.S., Velardo M.J., Peden C.S., Williams P., Zolotukhin S., Reier P.J., Mandel R.J., Muzyczka N. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 2004;10:302–317.

37. Cearley C.N., Wolfe J.H. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease // J. Neurosci. 2007;27;9928–9940.

38. Passini M.A., Lee E.B., Heuer G.G., Wolfe J.H. Distribution of a lysosomal enzyme in the adult brain by axonal transport and by cells of the rostral migratory stream. J. Neurosci. 2002;22:6437– 6446.

39. Luca T., Givogri M.I., Perani L., Galbiati F., Follenzi A., Naldini L., Bongarzone E.R. Axons mediate the distribution of arylsulfatase A within the mouse hippocampus upon gene delivery. Mol. Ther. 2005;12:669–679.

40. Vite C.H., McGowan J.C., Niogi S.N., Passini M.A., Drobatz K.J., Haskins M.E., Wolfe J.H. Effective gene therapy for an inherited CNS disease in a large animal model. Ann. Neurol. 2005;57: 355–364.

41. Geisler S., Zahm D.S. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J. Comp. Neurol. 2005;490;270–294.

42. Poisson C.L., Engel L., Saunders B.T. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits. 2021;15:752420.

43. Yetnikoff L., Lavezzi H.N., Reichard R.A., Zahm D.S. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience. 2014;282:23-48.

44. Hauck B., Zhao W., High K., Xiao W. Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adenoassociated virus transduction. J. Virol. 2004;78:13678–13686.

45. Ding W., Zhang L.N., Yeaman C., Engelhardt J.F. rAAV2 traffics through both the late and the recycling endosomes in a dosedependent fashion. Mol. Ther. 2006;13:671–682.

46. Zengel J., Carette J.E. Structural and cellular biology of adeno-associated virus attachment and entry. Adv. Virus Res. 2020;106:39-84.

47. Kelkar S., De B.P., Gao G., Wilson J.M., Crystal R.G., Leopold P.L. A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes. J. Virol. 2006;80:7781–7785.

48. Canty J.T., Tan R., Kusakci E., Fernandes J., Yildiz A. Structure and Mechanics of Dynein Motors. Annu. Rev. Biophys. 2021 May 6;50:549-574.

49. Derrick-Roberts A.L., Pyragius C.E., Kaidonis X.M., Jackson M.R., Anson D.S., Byers S. Lentiviral-mediated gene therapy results in sustained expression of β-glucuronidase for up to 12 months in the gus(mps/mps) and up to 18 months in the gus(tm(L175F)Sly) mouse models of mucopolysaccharidosis type VII. Hum. Gene Ther. 2014;25(9):798-810.

50. Albain J., Zon L.I. Of fish and men: Using zebrafish to fight human diseases. Trends Cell Biol. 2013;23:584–586.

51. Howe K., Clark M., Torroja C., Torrance J., Berthelot C., Muffato M., Collins J., Humphray S., McLaren K., Matthews L. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.

52. Lam S.H., Chua H.L., Gong Z., Lam T.J., Sin Y.M. Development and maturation of the immune system in zebrafish, Danio rerio: A gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 2004;28:9–28.

53. Zhang B., Shimada Y., Hirota T., Ariyoshi M., Kuroyanagi J., Nishimura Y., Tanaka T. Novel immunologic tolerance of human cancer cell xenotransplants in zebrafish. Transl. Res. 2016;170;89–98.

54. Zirger J.M., Puntel M., Bergeron J., Wibowo M., Moridzadeh R., Bondale N., Barcia C., Kroeger K.M., Liu C., Castro M.G. Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells. Mol. Ther. 2012;20:808–819.

55. Bonehill A., Heirman C., Thielemans K. Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy. J Gene Med. 2005;7(6):686-95.

56. Kim S., Lee K., Kim M.D., Kang S., Joo C.W., Kim J.M., Kim S.H., Yu S.S., Kim S. Factors affecting the performance of different long terminal repeats in the retroviral vector. Biochem. Biophys. Res. Commun. 2006;343(4):1017-22.

57. Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev. Med. Virol. 2009;19(3):165-78.

58. Myhre S., Henning P., Friedman M., Ståhl S., Lindholm L., Magnusson M.K. Re-targeted adenovirus vectors with dual specificity; binding specificities conferred by two different Affibody molecules in the fiber. Gene Ther. 2009;16(2):252-61.

59. Kurachi S., Koizumi N., Sakurai F., Kawabata K., Sakurai H., Nakagawa S., Hayakawa T., Mizuguchi H. Characterization of capsid-modified adenovirus vectors containing heterologous peptides in the fiber knob, protein IX, or hexon. Gene Ther. 2007;14(3):266-74.

60. Meyer K.J., Pellack D., Hedberg-Buenz A., Pomernackas N., Soukup D., Wang K., Fingert J.H., Anderson M.G. Recombinant adenovirus causes prolonged mobilization of macrophages in the anterior chambers of mice. Mol. Vis. 2021; 27:741-756.

61. Einfeld D.A., Schroeder R., Roelvink P.W., Lizonova A., King C.R., Kovesdi I., Wickham T.J. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J. Virol. 2001;75:11284–11291.

62. Lewis T.B., Glasgow J.N., Glandon A.M., Curiel D.T., Standaert D.G. Transduction of brain dopamine neurons by adenoviral vectors is modulated by CAR expression: rationale for tropism modified vectors in PD gene therapy. PLoS One. 2010;5(9):e12672.

63. Stepanenko A.A., Chekhonin V.P. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res. 2018; 257:40-51.

64. Ballesteros N.A., Alonso M., Saint-Jean S.R., Perez-Prieto S.I. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss). Fish Shellfish Immunol. 2015;45(2):877-88.

65. Lee J.Y., Hirono I.I., Aoki T. Stable expression of a foreign gene, delivered by gene gun, in the muscle of rainbow trout Oncorhynchus mykiss. Mar. Biotechnol. 2000;2:254–258.

66. Puglia A.L., Rezende A.G., Jorge S.A., Wagner R., Pereira C.A., Astray R.M. Quantitative RT-PCR for titration of replicationdefective recombinant Semliki Forest virus. J. Virol. Methods. 2013;193(2):647-52.

67. Herrmann L., Schelletter L., Hoffrogge R., Niehaus K., Rudolph V., Farr M. Human Coxsackie- and adenovirus receptor is a putative target of neutrophil elastase-mediated shedding. Mol Biol Rep. 2022 Feb 5. doi: 10.1007/s11033-022-07153-2.

68. Chung J., Kim K.H., An S.H., Lee S., Lim B.K., Kang S.W., Kwon K. Coxsackievirus and adenovirus receptor mediates the responses of endothelial cells to fluid shear stress. Exp Mol Med. 2019;51(11):1-15.


Рецензия

Для цитирования:


Пущина Е.В., Капустянов И.А., Вараксин А.А. Вирусные векторы в трансгенных исследованиях: перспективы использования для лечения болезней ЦНС и генной терапии. Тихоокеанский медицинский журнал. 2022;(1):46-55. https://doi.org/10.34215/1609-1175-2022-1-46-55

For citation:


Pushchina E.V., Kapustyanov I.A., Varaksin A.A. Viral Vectors in Transgenic Research: Prospects for the Treatment of CNS Diseases and Gene Therapy. Pacific Medical Journal. 2022;(1):46-55. (In Russ.) https://doi.org/10.34215/1609-1175-2022-1-46-55

Просмотров: 150


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)