Problems on ventilation and air cleaning in modern multifunctional hospitals
https://doi.org/10.34215/1609-1175-2024-4-15-20
Abstract
The present paper reviews current data reflecting the challenges associated with the functioning of ventilation systems and the contamination of airborne particulate matter of both microbiological and chemical origin within large hospitals. The review highlights the role of ventilation in the transmission and containment of healthcare-associated infections, as well as presents various types of ventilation systems and modern methods for their decontamination. Current requirements for the operation of ventilation systems in large healthcare facilities are summarized.
About the Authors
A. P. VshivkovaRussian Federation
Anna P. Vshivkova, post-graduate
medical-preventive faculty; department of hygiene
614097; 10, sq. 201 Pozharsky str.; Perm
phone: 8 (965) 57-71-919
L. V. Kirichenko
Russian Federation
Perm
References
1. Erisman FF, Hygiene course, Vol. 1. Air, water, soil, building materials, ventilation, Moscow, 1887. 521 p. (In Russ.)
2. Gregson FKA, Watson NA, Orton CM, Haddrell AE, McCarthy LP, Finnie TJR, Gent N, Donaldson GC, Shah PL, Calder JD, Bzdek BR, Costello D & Reid JP. Comparing aerosol concentrations and particle size distributions generated by singing, speaking and breathing. Aerosol Sci Technol. 2021;55:6, 681–91. doi: 10.1080/02786826.2021.1883544
3. Doremalen VN, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, Wit E, Munster VJ. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–7. doi: 10.1056/nejmc2004973
4. Fennelly M, Keane J, Dolan L, Plant B, O’Connor D, Sodeau J, Prentice MB. Containment of procedure-associated aerosols by an extractor tent: effect on nebulized drug particle dispersal. J Hosp Infect. 2021;110:108–3. doi: 10.1016/j.jhin.2021.01.009
5. Beggs CB, Kerr KG, Noakes CJ, Hathway EA, Sleigh A. The ventilation of multiple-bed hospital wards: Review and analysis. Am J Infect Control. 2008;36(4):250–9. doi: 10.1016/j.ajic.2007.07.012
6. Borshchenskaya TI, Batsu-kova NL, Pavlov AV, Hygienic assessment of ventilation: Educational manual, 2<sup>nd</sup> edition, Minsk BSMU, 2020. 28 p. (In Russ.)
7. Piapan L, Michieli DP, Ronchese F, Rui F, Peresson M, Segat L, D'Agaro P, Negro C, Bovenzi M, Filon FL. COVID-19 outbreaks in hospital workers during the first COVID-19 wave. Occup Med. 2022;72(2):110–7. doi: 10.1093/occmed/kqab161
8. Kramar OG, Savchenko TN. Hospital infections. Bulletin of VolGMU. 2010;2(34):3–7 (In Russ.)
9. Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G. How can airborne transmission of COVID-19 indoors be minimised? Environ Int. 2020;142:105832. doi: 10.1016/j.envint.2020.105832
10. Mingotti N, Grogono D, dello Ioio G, Curran M, Barbour K, Taveira M, Rudman J, Haworth CS, Floto RA, Woods AW. The Impact of hospital-ward ventilation on airborne-pathogen exposure. Am J Respir Crit Care Med. 2021;203(6):766–9. doi: 10.1164/rccm.202009-3634le
11. Zhou Y, Yang G. Real-time monitoring of pollutants in occupied indoor environments: A pilot study of a hospital in China. J Building Eng. 2022;59(1–4):105105. doi: 10.1016/j.jobe.2022.105105
12. Izadyar N, Miller W. Ventilation strategies and design impacts on indoor airborne transmission: A review. Build Environ. 2022;15(218)109158. doi: 10.1016/j.buildenv.2022.109158
13. Yam R, Yuen PL, Yung R, Choy T. Rethinking hospital general ward ventilation design using computational fluid dynamics. J Hosp Infect. 2011;77(1):31–6. doi: 10.1016/j.jhin.2010.08.010
14. Liu Z, Wang T, Wang Y, Liu H, Cao G, Tang S. The influence of air supply inlet location on the spatial-temporal distribution of bioaerosol in isolation ward under three mixed ventilation modes. Energy and Built Environment. 2023;4:445–57. doi: 10.1016/j.enbenv.2022.03.002
15. Ren J, Wang Y, Liu Q, Liu Y. Numerical study of three ventilation strategies in a prefabricated COVID-19 inpatient ward. Build Environ. 2021;15(188):107467. doi: 10.1016/j.buildenv.2020.107467
16. Lu Y, Lin Z. Coughed droplet dispersion pattern in hospital ward under stratum ventilation. Build Environ. 2022;208(1):108602. doi: 10.1016/j.buildenv.2021.108602
17. Kong X, Guo C, Lin Z, Duan S, He J, Ren Y, Ren J. Experimental study on the control effect of different ventilation systems on fine particles in a simulated hospital ward. Sustain Cities Soc. 2021;73:103102. doi: 10.1016/j.scs.2021.103102
18. Chen CY, Chen PH, Chen JK, Su TC. Recommendations for ventilation of remodeled negative-pressure isolation wards for COVID-19 patients: A comparison of international guidelines. J Formos Med Assoc. 2022;122(2):91–7. doi: 10.1016/j.jfma.2022.11.013
19. Morris AC, Sharrocks K, Bousfield R, Kermack L, Maes M, Higginson E, Forrest S, Pereira-Dias J, Cormie C, Old T, Brooks S, Hamed I, Koenig A, Turner A, White P, Floto A, Dougan G, Gkrania-Klotsas E, Gouliouris T, Baker S, Navapurkar V. The removal of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other microbial bioaerosols by air filtration on coronavirus disease 2019 (COVID-19) Surge Units. Clin Infect Dis. 2022;75(1):e97-e101. doi: 10.1093/cid/ciab933
20. Fennelly M, Hellebust S, Wenger J, O’Connor D, Griffith GW, Plant BJ, Prentice MB. Portable HEPA filtration successfully augments natural-ventilation-mediated airborne particle clearance in a legacy design hospital ward. J Hosp Infect. 2023;131:54–7. doi: 10.1016/j.jhin.2022.09.017
21. Homich AP, Smolnikov SA. Features of the design of heating and ventilation systems for medical institutions (hospitals, clinics). Molodoj Uchenyj. 2021;10(352):43–8 (In Russ.) URL: https://moluch.ru/archive/352/78928/
22. Morawska L, Allen J, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, Cao J, Dancer SJ, Floto A, Franchimon F, Greenhalgh T, Haworth C, Hogeling J, Isaxon C, Jimenez JL, Kurnitski J, Li Y, Loomans M, Marks G, Marr LC, Mazzarella L, Melikov AK, Miller S, Milton DK, Nazaroff W, Nielsen PV, Noakes C, Peccia J, Prather K, Querol X, Sekhar C, Seppänen O, Tanabe SI, Tang JW, Tellier R, Tham KW, Wargocki P, Wierzbicka A, Yao M. A paradigm shift to combat indoor respiratory infection. Science 2021;372(6543):689–91. doi: 10.1126/science.abg2025
23. Tulinskaya RS, Myakishev IA, Sokolov VD, Bannikova LP, Grigoryan KA. Hospital hygiene (practical training manual). Medicinskij Vestnik. No. 5(48). General hygiene. Issue 2. Chelyabinsk, 1997. 106 p. (In Russ.)
24. Avchinnikov AV, Egoricheva SD. Hygienic aspects of the prevention of infections associated with the provision of medical care in obstetric hospitals; Bulletin of the Smolensk State Medical Academy. 2015;14(3):92–6 (In Russ.)
25. Nikolaev N.S., Andreeva V.E., Orlova A.V. Modern Aspects of prevention of hospital infection in high-tech medical center (as exemplified by trauma and orthopedic profile). Manager Zdravoochranenia. 2013;1:36–43 (In Russ.)
26. Sanitary rules 2.1.3678-20 "Sanitary and epidemiological requirements for the operation of premises, buildings, structures, equipment and transport, as well as the conditions of activity of business entities engaged in the sale of goods, performance of works or provision of services" (In Russ.)
27. Revenko RA, Semenov FM. Ventilation of medical institutions: requirements and documentation. Santehnika, Otoplenie, Kondicionirovanie. 2023;5:64–5 (In Russ.)
28. Sukharev MB. Clean rooms of medical institutions, Poliklinika. 2012;5:19–21 (In Russ.)
29. Vergani S. Air treatment systems in infectious diseases departments of hospitals. Santehnika, Otoplenie, Kondicionirovanie. 2004;4:60–7 (In Russ.)
30. Borisoglebskaya AP. Hospital operating rooms. Air flow control. Santehnika, Otoplenie, Kondicionirovanie. 2009;8:44–54 (In Russ.)
31. Sanitary rules and regulations 3.3686–21 "Sanitary and epidemiological requirements for the prevention of infectious diseases" (In Russ.)
32. Li Y, Leung GM, Tang JW, Yang X, Chao CY, Lin JZ, Lu JW, Nielsen PV, Niu J, Qian H, Sleigh AC, Su11 H-JJ, Sundell J, Wong TW, Yuen PL. Role of ventilation in airborne transmission of infectious agents in the built environment : a multidisciplinary systematic review. Indoor Air 2007;17(1):2–18. doi: 10.1111/j.1600-0668.2006.00445.x
33. Borisoglebskaya AP. Ventilation and air conditioning of medical and preventive institutions. Santehnika, Otoplenie, Kondicionirovanie. 2010;8:34–43 (In Russ.)
34. Tabunshchikov YuA. Ventilation in Hospitals: Who is to Blame and What is to be Done? Santehnika, Otoplenie, Kondicionirovanie. 2021;2:4–9 (In Russ.) URL: https://www.abok.ru/for_spec/articles.php?nid=7753
35. Knyazeva TA. Air conditioning systems. Vestnik Magistratury. 2020;2-2(101): 33–46 (In Russ.)
36. Pyshkin IR. Conditioning of medical institutions. Vestnik Magistratury. 2022;1–1(124):29–31 (In Russ.)
37. Gruzdeva OA, Tartakovsky IS, Karpova TI, Marinenko OV. Features of epidemiology and methods of prevention of nosocomial legionellosis. Epidemiology and Vaccinal Prevention. 2014;1(74):19–23 (In Russ.)
38. Gruzdeva OA, Filatov NN, Tartakovskiy IS, Marin GG. Epidemiological features of legionellosis in the Russian Federation. Epidemiology and Infectious Diseases. 2017;22(2):86–92 (In Russ.) doi: 10.18821/1560-9529-2017-22-2-86-92
Review
For citations:
Vshivkova A.P., Kirichenko L.V. Problems on ventilation and air cleaning in modern multifunctional hospitals. Pacific Medical Journal. 2024;(4):15-20. (In Russ.) https://doi.org/10.34215/1609-1175-2024-4-15-20