Activity of lysostaphin against Staphylococcus aureus and Staphylococcus epidermidis, and their biofilms
https://doi.org/10.34215/1609-1175-2024-4-27-31
Abstract
Objective. To conduct a comparative evaluation of lysostaphin activity against isolates of S. aureus, S. epidermidis and their biofilms, obtained from orthopedic patients.
Materials and methods. The study examines the effect of lysostaphin on 120 clinical bacterial isolates (30 MSSA, 30 MRSA, 30 MSSE, and 30 MRSE) alongside four reference strains of staphylococci. The minimum inhibitory concentration of lysostaphin was determined using a serial dilution method (ranging from 0.06 to 512 mg/l). The effect on biofilms and their formation was assessed by means of the O'Toole method. Data analysis was performed using GraphPad Prism software.
Results. According to the results, lysostaphin exhibited twice the activity against methicillin-sensitive strains and was more effective against S. aureus compared to S. epidermidis. The studied concentrations of lysostaphin effectively prevented biofilm formation, particularly in MSSA strains. The MBIC90 value for lysostaphin was found to be four times higher for MRSE strains and twice as high for S. aureus. Additionally, the MBEC90 value of lysostaphin against S. epidermidis was 32 times greater than that observed for S. aureus.
Conclusion. The pronounced anti-staphylococcal activity of lysostaphin, along with its significant destructive effect on S. aureus biofilms, offers a considerable potential for further investigation and implementation in clinical practice to combat staphylococcal infections, including those associated with various implants in orthopedics, dentistry, and cardiology.
About the Authors
E. M. GordinaRussian Federation
Ekaterina M. Gordina, Cand. Sci. (Med.), senior researcher
division of wound infection treatment and prevention
195427; 8 Akademika Baykova street; St. Petersburg
phone: +7 (964) 339-25-08
S. A. Bozhkova
Russian Federation
St. Petersburg
D. A. Goncharuk
Russian Federation
Moscow
E. N. Tkach
Russian Federation
Moscow
A. R. Kasimova
Russian Federation
St. Petersburg
References
1. Chen H, Zhang J, He Y, Lv Z, Liang Z, Chen J, et al. Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel). 2022;14(7):464. doi: 10.3390/toxins14070464
2. Kasimova AR, Tufanova OS, Gordina EM, Gvozdetsky AN, Radaeva KS, Rukina AN, Bozhkova SA, Tikhilov RM. Twelve-Year Dynamics of Leading Pathogens Spectrum Causing Orthopedic Infections from 2011 to 2022: A Retrospective Study. Traumatology and Orthopedics of Russia. 2024;30(1):66–75 (In Russ.) doi: 10.17816/2311-2905-16720
3. Tsiskarashvili AV, Melikova RE, Novozhilova EA. Analysis of six-year monitoring of common pathogens causing periprosthetic joint infection of major joints and the tendency to resistance. Genij Ortopedii, 2022;28(2):179–188 (In Russ.) doi: 10.18019/1028- 4427-2022-28-2-179-188
4. Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52(4):1701–1718. doi: 10.1007/s42770-021-00624-x
5. Yue Y, Chen K, Sun C, Ahmed S, Ojha SC. Antimicrobial peptidase lysostaphin at subinhibitory concentrations modulates staphylococcal adherence, biofilm formation, and toxin production. BMC Microbiol. 2023;23(1):311. doi: 10.1186/s12866-023-03052-z
6. Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, et al. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep. 2019;9(1):5965. doi: 10.1038/s41598-019-42435-z
7. Gordina EM, Bozhkova SA, Labutin DV, Goncharuk DA, Tkach EN. Antistaphylococcal activity and cytocompatibility of lysostaphin. Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia. 2023;1(25):77–82 (In Russ.) doi: 10.36488/cmac.2023.1.77-82
8. Liu J, Chen D, Peters BM, Li L, Li B, Xu Z, et al. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathog. 2016;101:56–67. doi: 10.1016/j.micpath.2016.10.028
9. Sadoogh AS, Ghaznavi-Rad E, Sadelaji S, Abtahi H. In vivo efficiency of the produced recombinant lysostaphin antimicrobial peptide in treatment of methicillin-resistant Staphylococcus aureus (MRSA) skin infection in a mouse model. Iran J Microbiol. 2023;15(2):243–250. doi: 10.18502/ijm.v15i2.12476
10. Yang XY, Li CR, Lou RH, Wang YM, Zhang WX, Chen HZ, et al. In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from hospitals in Beijing, China. J Med Microbiol. 2007;56(Pt1):71–76. doi: 10.1099/jmm.0.46788-0
11. Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel). 2020;10(1):3. doi: 10.3390/antibiotics10010003
12. François P, Schrenzel J, Götz F. Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci. 2023;24(6):5218. doi: 10.3390/ijms24065218
13. Grishin AV, Lavrova NV, Lyashchuk AM, Strukova NV, Generalova MS, Ryazanova AV, et al. The Influence of Dimerization on the Pharmacokinetics and Activity of an Antibacterial Enzyme Lysostaphin. Molecules. 2019;24(10):1879. doi: 10.3390/molecules24101879
Review
For citations:
Gordina E.M., Bozhkova S.A., Goncharuk D.A., Tkach E.N., Kasimova A.R. Activity of lysostaphin against Staphylococcus aureus and Staphylococcus epidermidis, and their biofilms. Pacific Medical Journal. 2024;(4):27-31. (In Russ.) https://doi.org/10.34215/1609-1175-2024-4-27-31