Роль факторов гипоксии в транскрипционных механизмах клонального гемопоэза при миелодиспластическом синдроме
https://doi.org/10.34215/1609-1175-2025-3-11-20
Аннотация
Гипоксия-индуцируемый фактор (Hypoxia-induced factor, HIF), главный регулятор клеточного ответа на гипоксию, координирует адаптацию через активацию генов, контролирующих ангиогенез (Vascular Endothelial Growth Factor, VEGF), метаболизм глюкозы (Glucose Transporter, GLUT1, GLUT3), пролиферацию (Insulin-like Growth Factor, IGF-2), pH-гомеостаз (Carbonic anhydrase, CA IX) и эритропоэз (ЭПО). Роль HIF как маркера гипоксии и драйвера агрессивности солидных опухолей не вызывает сомнений, однако его вклад в патогенез гематологических заболеваний, в частности в развитие клонального кроветворения и лейкемогенез, остается малоизученным и противоречивым. В данном обзоре литературы мы сосредоточились на анализе взаимосвязи экспрессии HIF-1α (наиболее изученной изоформы) с риском возникновения клонального гемопоэза при миелодиспластическом синдроме (МДС), возможностью последующей трансформации в острый миелобластный лейкоз (ОМЛ) и неблагоприятным прогнозом течения МДС в целом. Особое внимание уделено потенциальным механизмам, посредством которых гипоксия и HIF-1α могут способствовать селективному преимуществу диспластического клона (например, через изменение метаболизма, апоптоза или взаимодействия со стромой костного мозга) и его злокачественной прогрессии. Полученные данные важны для оценки риска течения МДС и поиска новых терапевтических мишеней коррекции возникших нарушений.
Об авторах
В. А. НевзороваРоссия
Владивосток
А. С. Волосатов
Россия
Волосатов Алексей Сергеевич – врач-стажер отделения гематологии; ординатор института терапии и инструментальной диагностики
690105, Владивосток, ул. Русская, 55
690002, Владивосток, пр-т Острякова, 2
А. В. Талько
Россия
Владивосток
Н. С. Музыченко
Россия
Владивосток
В. С. Дубов
Россия
Владивосток
В. М. Черток
Россия
Владивосток
Список литературы
1. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differentialroles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74. doi: 10.1128/MCB.23.24.9361-9374.2003
2. Невзорова В.А., Черток В.М., Бродская Т.А., Селюкова П.А., Захарчук Н.В. Дисфункция митохондрий и сосудистое старение при коморбидной патологии. Тихоокеанский медицинский журнал. 2022;(1):10–16. doi: 10.34215/1609-1175-2022-1-10-16
3. Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett. 2025;30:2. doi: 10.1186/s11658-024-00682-7
4. Stergiou IE, Kambas K, Poulaki A, Giannouli S, Katsila T, Dimitrakopoulou A, Vidali V, Mouchtouris V, Kloukina I, Xingi E, Pagakis SN, Probert L, Patrinos GP, Ritis K, Tzioufas AG, Voulgarelis M. Exploiting the Role of Hypoxia-Inducible Factor 1 and Pseudohypoxia in the Myelodysplastic Syndrome Pathophysiology. Int J Mol Sci. 2021;22(8):4099. doi: 10.3390/ijms22084099
5. Титова О.Н., Кузубова Н.А., Лебедева Е.С. Роль гипоксийного сигнального пути в адаптации клеток к гипоксии. РМЖ. Медицинское обозрение. 2020;4(4):207–213. doi: 10.32364/2587-6821-2020-4-4-207-213
6. Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. Drug Des Devel Ther. 2020;14:4915–4949. doi: 10.2147/DDDT.S274980
7. Коцюба А.Е., Черток В.М., Романова Т.Е. Особенности распределения HIF-1α- и HIF-2α-иммунопозитивных нейронов в коре головного мозга у старых крыс после экспериментального инфаркта миокарда. Тихоокеанский медицинский журнал. 2025;(1):34–39. doi: 10.34215/1609-1175-2025-1-34-39
8. Carrero P, Okamoto K, Coumailleau P, O’Brien S, Tanaka H, Poellinger L. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxiainducible factor 1α. Mol Cell Biol. 2000;20:402–415.
9. He W, Batty-Stuart S, Lee JE, Ohh M. Structural insights into hypoxia-inducible factor regulation. J Mol Biol. 2021;433(15):167244. doi: 10.1016/j.jmb.2021.167244
10. Zimna A, Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res Int. 2015;2015:549412.
11. Bakleh MZ, Al Haj Zen A. The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis. Cells. 2025;14(9):673. doi: 10.3390/cells14090673
12. Seo J, Jeong DW, Park JW, Lee KW, Fukuda J, Chun YS. Fattyacid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells. Commun Biol. 2020;3:638. doi: 10.1038/s42003-020-01367-5
13. Shanmugasundaram K, Nayak B, Shim EH, Livi CB, Block K, Sudarshan S. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling. J Biol Chem. 2014;289(35):24691–9. doi: 10.1074/jbc.M114.568162
14. Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 2019;14(7):667–682. doi: 10.1080/17460441.2019.1613370
15. Lv X, Li J, Zhang C, Hu T, Li S, He S, Yan H, Tan Y, Lei M, Wen M, Zuo J. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis. 2017;4(1):19–24. doi: 10.1016/j.gendis.2016.11.003
16. Li T, Copeland C, Le A. Glutamine Metabolism in Cancer. In: Le A., editor. The Heterogeneity of Cancer Metabolism. 2nd edition. Cham (CH): Springer. 2021. doi: 10.1007/978-3-030-65768-0_2
17. Mylonis I, Simos G, Paraskeva E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells. 2019;8(3):214. doi: 10.3390/cells8030214
18. Song CW, Kim H, Kim MS, Park HJ, Paek SH, Terezakis S, Cho LC. Role of HIF-1α in the Responses of Tumors to Radiotherapy and Chemotherapy. Cancer Res Treat. 2025;57(1):1–10. doi: 10.4143/crt.2024.255. Epub 2024 Jun 5.
19. Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel). 2023;15(15):3898. doi: 10.3390/cancers15153898
20. Lau EY, Ho NP, Lee TK. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications. Stem Cells Int. 2017;2017:3714190. doi: 10.1155/2017/3714190
21. Gojkovic M, Cunha PP, Darmasaputra GS, Barbieri L, Rundqvist H, Veliça P, Johnson RS. Oxygen-Mediated Suppression of CD8+ T Cell Proliferation by Macrophages: Role of Pharmacological Inhibitors of HIF Degradation. Front Immunol. 2021;12:633586. doi: 10.3389/fimmu.2021.633586
22. Chen HW, Chen HY, Wang LT, Wang FH, Fang LW, Lai HY, Chen HH, Lu J, Hung MS, Cheng Y, Chen MY, Liu SJ, Chong P, Lee OK, Hsu SC. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines. J Immunol. 2013;190(10):5065–77. doi: 10.4049/jimmunol.1202775
23. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127–148. doi: 10.1093/intimm/dxaa078
24. Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal. 2024;122:111345. doi: 10.1016/j.cellsig.2024.111345
25. Bernstein N, Spencer Chapman M, Nyamondo K, Chen Z, Williams N, Mitchell E, Campbell PJ, Cohen RL, Nangalia J. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat Genet. 2024;56(6):1147–1155. doi: 10.1038/s41588-024-01755-1
26. Awada H, Thapa B, Visconte V. The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications. Cells. 2020;9(11):2512. doi: 10.3390/cells9112512
27. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, Shlien A, Groves MJ, Forbes SA, Raine K, Hinton J, Mudie LJ, McLaren S, Hardy C, Latimer C, Della Porta MG, O'Meara S, Ambaglio I, Galli A, Butler AP, Walldin G, Teague JW, Quek L, Sternberg A, Gambacorti-Passerini C, Cross NC, Green AR, Boultwood J, Vyas P, Hellstrom-Lindberg E, Bowen D, Cazzola M, Stratton MR, Campbell PJ; Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27; quiz 3699. doi: 10.1182/blood-2013-08-518886
28. Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett. 2024;29(1):53. doi: 10.1186/s11658-024-00570-0
29. Miller LH, Qu CK, Pauly M. Germline mutations in the bone marrow microenvironment and dysregulated hematopoiesis. Exp Hematol. 2018;66:17–26. doi: 10.1016/j.exphem.2018.07.001
30. Qu B, Han X, Zhao L, Zhang F, Gao Q. Relationship of HIF-1α expression with apoptosis and cell cycle in bone marrow mesenchymal stem cells from patients with myelodysplastic syndrome. Mol Med Rep. 2022;26(1):239. doi: 10.3892/mmr.2022.12755
31. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327334. doi: 10.1038/nature12984
32. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327–33. doi: 10.1182/blood-2007-02-074997
33. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33. doi: 10.1016/j.cell.2006.07.035
34. Poon Z, Dighe N, Venkatesan SS, Cheung AMS, Fan X, Bari S, Hota M, Ghosh S, Hwang WYK. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia. 2019;33(6):1487–1500. doi: 10.1038/s41375-018-0310-y
35. Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene. 2021;798:145796. doi: 10.1016/j.gene.2021.145796
36. Zhang Y, Liu D, Hu H, Zhang P, Xie R, Cui W. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother. 2019;120:109464. doi: 10.1016/j.biopha.2019.109464
37. Peddie CM, Wolf CR, McLellan LI, Collins AR, Bowen DT. Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-alpha concentration. Br J Haematol. 1997;99(3):625–31. doi: 10.1046/j.1365-2141.1997.4373247.x
38. Bae T., Hallis S.P., Kwak M.K. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med. 2024;56:501–514. doi: 10.1038/s12276-024-01180-8
39. Takubo K, Goda N, Yamada W. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402. doi: 10.1016/j.stem.2010.06.020
40. Hayashi Y, Zhang Y, Yokota A, Yan X, Liu J, Choi K, Li B, Sashida G, Peng Y, Xu Z, Huang R, Zhang L, Freudiger GM, Wang J, Dong Y, Zhou Y, Wang J, Wu L, Bu J, Chen A, Zhao X, Sun X, Chetal K, Olsson A, Watanabe M, Romick-Rosendale LE, Harada H, Shih LY, Tse W, Bridges JP, Caligiuri MA, Huang T, Zheng Y, Witte DP, Wang QF, Qu CK, Salomonis N, Grimes HL, Nimer SD, Xiao Z, Huang G. Pathobiological Pseudohypoxia as a Putative Mechanism Underlying Myelodysplastic Syndromes. Cancer Discov. 2018;8(11):1438–1457. doi: 10.1158/2159-8290.CD-17-1203
41. Kaisrlikova M, Vesela J, Kundrat D, Votavova H, Dostalova Merkerova M, Krejcik Z, Divoky V, Jedlicka M, Fric J, Klema J, Mikulenkova D, Stastna Markova M, Lauermannova M, Mertova J, Soukupova Maaloufova J, Jonasova A, Cermak J, Belickova M. RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: a study on patients with lower-risk MDS. Leukemia. 2022;36(7):1898–1906. doi: 10.1038/s41375-022-01584-3
42. Stergiou IE, Kambas K, Poulaki A, Giannouli S, Katsila T, Dimitrakopoulou A, Vidali V, Mouchtouris V, Kloukina I, Xingi E, Pagakis SN, Probert L, Patrinos GP, Ritis K, Tzioufas AG, Voulgarelis M. Exploiting the Role of Hypoxia-Inducible Factor 1 and Pseudohypoxia in the Myelodysplastic Syndrome Pathophysiology. International Journal of Molecular Sciences. 2021;22(8):4099. doi: 10.3390/ijms22084099
43. Zhang K, Jin D, Zhao X, Lu B, Guo W, Ren R, Wu S, Zhang J, Li Y. HIF-1α-Induced Mitophagy Regulates the Regenerative Outcomes of Stem Cells in Fat Transplantation. Cell Transplant. 2023;32:9636897231210750. doi: 10.1177/09636897231210750
44. Liang HW, Luo B, Du LH, He RQ, Chen G, Peng ZG, Ma J. Expression significance and potential mechanism of hypoxiainducible factor 1 alpha in patients with myelodysplastic syndromes. Cancer Med. 2019;8(13):6021–6035. doi: 10.1002/cam4.2447
45. Luo Y, Wang X, Shen J, Yao J. Macrophage migration inhibitory factor in the pathogenesis of leukemia (Review). Int J Oncol. 2021;59(2):62. doi: 10.3892/ijo.2021.5242
46. Vukotić M, Kapor S, Simon F, Cokic V, Santibanez JF. Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities. Heliyon. 2024;10(3):e25081. doi: 10.1016/j.heliyon.2024.e25081
47. Lawson H, Holt-Martyn JP, Dembitz V, Kabayama Y, Wang LM, Bellani A, Atwal S, Saffoon N, Durko J, van de Lagemaat LN, De Pace AL, Tumber A, Corner T, Salah E, Arndt C, Brewitz L, Bowen M, Dubusse L, George D, Allen L, Guitart AV, Fung TK, So CWE, Schwaller J, Gallipoli P, O'Carroll D, Schofield CJ, Kranc KR. The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia. Nat Cancer. 2024;5(6):916–937. doi: 10.1038/s43018-024-00761-w
48. Velasco-Hernandez T, Hyrenius-Wittsten A, Rehn M, Bryder D, Cammenga J. HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood. 2014;124(24):3597–607. doi: 10.1182/blood-2014-04-567065
Рецензия
Для цитирования:
Невзорова В.А., Волосатов А.С., Талько А.В., Музыченко Н.С., Дубов В.С., Черток В.М. Роль факторов гипоксии в транскрипционных механизмах клонального гемопоэза при миелодиспластическом синдроме. Тихоокеанский медицинский журнал. 2025;(3):11-20. https://doi.org/10.34215/1609-1175-2025-3-11-20
For citation:
Nevzorova V.A., Volosatov A.S., Talko A.V., Muzychenko N.S., Dubov V.S., Chertok V.M. Role of hypoxia factors in the transcriptional mechanisms of clonal hematopoiesis in myelodysplastic syndrome. Pacific Medical Journal. 2025;(3):11-20. (In Russ.) https://doi.org/10.34215/1609-1175-2025-3-11-20





























