AMYGDALIN IN KERNELS OF STONE FRUITS OF ROSACEAE FAMILY GROWING IN PRIMORYE
https://doi.org/10.17238/PmJ1609-1175.2019.2.62-64
Abstract
Objective: comparative determination of glycoside of amygdalin in kernels of stone fruits of Rosaceae family growing in southern districts of Primorskiy territory.
Methods: We used fruits of Prunus padus and Prunus maackii, apricots, plums and cherries of different species, and we used their kernels to make an extract with 95 % ethanol using simple maceration. We performed spectrophotometry, liquid chromatography and mass-spectroscopy to examine extracts.
Results: Due to combination of physical and chemical parameters amygdaline was identified in extracts of kernels of bird cherry fruits. Its highest content was detected in kernels of Prunus maackii fruits. Intervarietal differences of glycoside content over the species range were insignificant. The content of amygdalin in kernels of Prunus maackii was 16–18 % lower than in bitter almonds, however kernels of this bird cherry fruits have much less ballast substances that simplifies manufacturing technology.
Conclusions: Kernels of Prunus maackii fruits are similar to bitter almond in amygdalin content and are show promise as raw materials resource to produce herbal medicinal products of amygdalin.
About the Authors
A. Yu. ManyakhinRussian Federation
159 100-letiya Vladivostoku Ave. Vladivostok 690022 Russian Federation
41 Gogolya St. Vladivostok 690014 Russian Federation
V. M. Koldaev
Russian Federation
159 100-letiya Vladivostoku Ave. Vladivostok 690022 Russian Federation
References
1. Koldaev V.M. Numerical indexes of absorption spectra of extracts from leaves of Primorye plants. Vladivostok: Dalnauka, 2018. 120 p.
2. Minina S.A., Kaukhova I.E. Chemistry and technology of phytopreparations. Moscow: GEOTAR-Media, 2009. 500 p.
3. Ablaev N.R., Majmanova A.M. Molecular and Biochemical Aspects of Vitamin B17 // Bulletin of the Alma-Ata State Institute of Advanced Medical Education. 2013. No. 4. P. 71–73.
4. Myatlev V.D., Panchenko L.A., Riznichenko G.Y. [et al.]. Theory of probability and mathematical statistics. Mathematical models. Moscow: Academia, 2009. 320 p.
5. Amygdalin. URL: https:/ru.wikipedia.org/wiki/Amygdalin (date of access: 7.02.2019).
6. Minina S.A., Kaukhova I.E. Chemistry and technology of phytopreparations. Moscow: GEOTAR-Media, 2009. 500 p.
7. Properties and application of bitter almonds. URL: http://orehiplus.ru/mindal/svojstva-i-primenenie-gorkogo-mindalya.html (date of access: 7.02.2019).
8. Koldaev V.M. Numerical indexes of absorption spectra of extracts from leaves of Primorye plants. Vladivostok: Dalnauka, 2018. 120 p.
9. Myatlev V.D., Panchenko L.A., Riznichenko G.Y. [et al.]. Theory of probability and mathematical statistics. Mathematical models. Moscow: Academia, 2009. 320 p.
10. Berenguer-Navarro V., Giner-Galvan R.M., Grane-Teruel N. Chromatographic determination of cyanoglycosides Prunasin and Amygdalin in plant extracts using a porous graphitic carbon column // J. Agric. Food Chem. 2002. Vol. 59, No 24. P. 6960–6963.
11. Minina S.A., Kaukhova I.E. Chemistry and technology of phytopreparations. Moscow: GEOTAR-Media, 2009. 500 p.
12. Properties and application of bitter almonds. URL: http://orehiplus.ru/mindal/svojstva-i-primenenie-gorkogo-mindalya.html (date of access: 7.02.2019).
13. Blaheta R.A., Nelson K., Haferkamp A. [et al.]. Amygdalin, quackery or cure? // Phytomedicine. 2016. Vol. 23, No 4. P. 367–376.
14. Berenguer-Navarro V., Giner-Galvan R.M., Grane-Teruel N. Chromatographic determination of cyanoglycosides Prunasin and Amygdalin in plant extracts using a porous graphitic carbon column // J. Agric. Food Chem. 2002. Vol. 59, No 24. P. 6960–6963.
15. Myatlev V.D., Panchenko L.A., Riznichenko G.Y. [et al.]. Theory of probability and mathematical statistics. Mathematical models. Moscow: Academia, 2009. 320 p.
16. Bolarinwa I.F., Orfila C., Morgan M.R.A. Amygdalin content of seeds, kernels and food products commercially-available in the UK // Food Chemistry. 2014. Vol. 152. P. 133–139.
17. Blaheta R.A., Nelson K., Haferkamp A. [et al.]. Amygdalin, quackery or cure? // Phytomedicine. 2016. Vol. 23, No 4. P. 367–376.
18. Properties and application of bitter almonds. URL: http://orehiplus.ru/mindal/svojstva-i-primenenie-gorkogo-mindalya.html (date of access: 7.02.2019).
19. Cairns T., Siegmund E.G., Chemical ionization mass spectrometry of amygdalin with ammonia gas // Biological Mass Spectrometry. 1982. Vol. 9, No. 7. P. 307–309.
20. Berenguer-Navarro V., Giner-Galvan R.M., Grane-Teruel N. Chromatographic determination of cyanoglycosides Prunasin and Amygdalin in plant extracts using a porous graphitic carbon column // J. Agric. Food Chem. 2002. Vol. 59, No 24. P. 6960–6963.
21. Bolarinwa I.F., Orfila C., Morgan M.R.A. Amygdalin content of seeds, kernels and food products commercially-available in the UK // Food Chemistry. 2014. Vol. 152. P. 133–139.
22. Ge B. Y., Chen H. X., Han F. M. [et al.]. Identification of amygdalin and its major metabolites in rat urine by LC–MS/MS // Journal of Chromatography B. 2007. Vol. 857, No. 2. P. 281–286.
23. Blaheta R.A., Nelson K., Haferkamp A. [et al.]. Amygdalin, quackery or cure? // Phytomedicine. 2016. Vol. 23, No 4. P. 367–376.
24. Cairns T., Siegmund E.G., Chemical ionization mass spectrometry of amygdalin with ammonia gas // Biological Mass Spectrometry. 1982. Vol. 9, No. 7. P. 307–309.
25. Lee J., Zhang G., Wood E. [et al.] .Quantification of Amygdalin in Nonbitter, Semibitter, and Bitter Almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS // Journal of Agricultural and Food Chemistry. 2013. Vol. 61, No. 32. P. 7754–7759.
26. Ge B. Y., Chen H. X., Han F. M. [et al.]. Identification of amygdalin and its major metabolites in rat urine by LC–MS/MS // Journal of Chromatography B. 2007. Vol. 857, No. 2. P. 281–286.
27. Bolarinwa I.F., Orfila C., Morgan M.R.A. Amygdalin content of seeds, kernels and food products commercially-available in the UK // Food Chemistry. 2014. Vol. 152. P. 133–139.
28. Makarevic J., Tsaur I., Juengel E. [et al.]. Amygdalin delays cell cycle progression and blocs growth of prostate cells in vitro // Life Sciences. 2016. Vol. 147. P. 137–142.
29. Lee J., Zhang G., Wood E. [et al.] .Quantification of Amygdalin in Nonbitter, Semibitter, and Bitter Almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS // Journal of Agricultural and Food Chemistry. 2013. Vol. 61, No. 32. P. 7754–7759.
30. Cairns T., Siegmund E.G., Chemical ionization mass spectrometry of amygdalin with ammonia gas // Biological Mass Spectrometry. 1982. Vol. 9, No. 7. P. 307–309.
31. Qian L., Xie B., Wang Y. [et al.]. Amygdalin mediated inhibition of non-small sell lung cancer cell invasion in vitro // IJCEP. 2015. Vol. 8, No. 5. P. 5363–5370.
32. Ge B. Y., Chen H. X., Han F. M. [et al.]. Identification of amygdalin and its major metabolites in rat urine by LC–MS/MS // Journal of Chromatography B. 2007. Vol. 857, No. 2. P. 281–286.
33. Makarevic J., Tsaur I., Juengel E. [et al.]. Amygdalin delays cell cycle progression and blocs growth of prostate cells in vitro // Life Sciences. 2016. Vol. 147. P. 137–142.
34. Qian L., Xie B., Wang Y. [et al.]. Amygdalin mediated inhibition of non-small sell lung cancer cell invasion in vitro // IJCEP. 2015. Vol. 8, No. 5. P. 5363–5370.
35. Lee J., Zhang G., Wood E. [et al.] .Quantification of Amygdalin in Nonbitter, Semibitter, and Bitter Almonds (Prunus dulcis) by UHPLC-(ESI)QqQ MS/MS // Journal of Agricultural and Food Chemistry. 2013. Vol. 61, No. 32. P. 7754–7759.
36. Makarevic J., Tsaur I., Juengel E. [et al.]. Amygdalin delays cell cycle progression and blocs growth of prostate cells in vitro // Life Sciences. 2016. Vol. 147. P. 137–142.
37. Qian L., Xie B., Wang Y. [et al.]. Amygdalin mediated inhibition of non-small sell lung cancer cell invasion in vitro // IJCEP. 2015. Vol. 8, No. 5. P. 5363–5370.
Review
For citations:
Manyakhin A.Yu., Koldaev V.M. AMYGDALIN IN KERNELS OF STONE FRUITS OF ROSACEAE FAMILY GROWING IN PRIMORYE. Pacific Medical Journal. 2019;(2):62-64. (In Russ.) https://doi.org/10.17238/PmJ1609-1175.2019.2.62-64