Роль матричных металлопротеиназ и провоспалительных цитокинов в регенерации межпозвонкового диска
Аннотация
Об авторах
Л. А. БардоноваРоссия
Е. Г. Белых
Россия
И. А. Степанов
Россия
В. А. Бывальцев
Россия
Список литературы
1. Благодатский М.Д., Балашов Б.Б. О морфологических изменениях в тканях позвоночного канала // Журнал невропатологии и психиатрии. 1987. Т. 87, № 4. С. 512-516.
2. Благодатский М.Д., Солодун Ю.В. Об аутоиммунном компоненте воспалительных реакций при корешковых синдромах // Журнал невропат. и психиатр. 1988. Т. 88, № 4. С. 46-51.
3. Бывальцев В.А., Панасенков С.Ю. Наноструктурный анализ поясничных межпозвонковых дисков на разных стадиях дегенеративного процесса // Вопросы нейрохирургии им. Н.Н. Бурденко. 2013. № 3. С. 36-41.
4. Abe Y., Akeda K., An H.S. [et al.] Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells // Spine. 2007. Vol. 32. P. 635-642.
5. Akiyama H. Control of chondrogenesis by the transcription factor Sox9 // Modern Rheumatol. 2008. Vol. 18, No. 3. P. 213-219.
6. An H.S., Masuda K., Inoue N. Intervertebral disc degeneration: biological and biomechanical factors // J. Orthop. Sci. 2010. Vol. 11, No. 5. P. 541-552.
7. Ariga K., Yonenobu K., Nakase T. [et al.] Localization of cathepsins D, K, and L in degenerated human intervertebral discs // Spine. 2011. Vol. 26. P. 2666-2672.
8. Burke J.G., Watson R.W., Mc Cormack D. [et al.] Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators // J. Bone Joint Surg. Br. 2012. Vol. 84. P. 196-201.
9. Crock H.V., Goldwasser M., Yoshizawa H. Vascular anatomy related to the intervertebral disc // The biology of the intervertebral disc. 2008. Vol. 4. P. 109-133.
10. Freemont A.J. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain // Rheumatology. 2009. Vol. 48, No. 1. P. 5-10.
11. Goupille P., Jayson M.I., Valat J.P. [et al.] Matrix metalloproteinases: the clue to intervertebral disc degeneration? // Spine. 2008. Vol. 23. P. 1612-1626.
12. Gruber H.E., Hoelscher G.L., Leslie K. [et al.] Threedimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production // Biomaterials. 2006. Vol. 27, No. 3. P. 371-376.
13. Gruber H.E., Norton H.J., Hanley E.N. Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro // Spine. 2010. Vol. 25. P. 2153-2157.
14. Handa T., Ishihara H., Ohshima H. [et al.] Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc // Spine. 2007. Vol. 22. P. 1085-1091.
15. Inoue H. Three-dimensional architecture of lumbar intervertebral discs // Spine. 2008. Vol. 6. P. 139-146.
16. Jimbo K., Park J.S., Yokosuka K. [et al.] Positive feedback loop of interleukin-1beta upregulating production of inflammatory mediators in human intervertebral disc cells in vitro // J. Neurosurg. Spine. 2005. Vol. 2. P. 589-595.
17. Kanemoto M., Hukuda S., Komiya Y. [et al.] Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1human intervertebral discs // Spine. 2004. Vol. 21. P. 1-8.
18. Kang J.D., Georgescu H.I., McIntyre-Larkin L. [et al.] Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2 // Spine. 2006. Vol. 21. P. 271-277.
19. Kramer J., Hegert C., Guan K. [et al.] Embryonic stem cellderived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4 // Mech. Dev. 2010. Vol. 92. P. 193-205.
20. Kroeber M.W., Unglaub F., Wang H. [et al.] New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration // Spine. 2002. Vol. 27. P. 2684-2690.
21. Kuhlcke K., Fehse B., Schilz A. [et al.] Highly efficient retroviral gene transfer based on centrifugation-mediated vector preloading of tissue culture vessels // Mol. Ther. 2009. Vol. 5. P. 473-478.
22. Lattermann C., Oxner W.M., Xiao X. [et al.] The adenoassoci-ated viral vector as a strategy for intradiscal gene transfer in immune competent and pre-exposed rabbits // Spine. 2012. Vol. 30. P. 497-504.
23. Liu P., Kalajzic I., Stover M.L. [et al.] Human bone marrow stromal cells are efficiently transduced by vesicular stomatitis virus-pseudotyped retrovectors without affecting subsequent osteoblastic differentiation // Bone. 2011. Vol. 29. P. 331-335.
24. Lyons G., Eisenstein S.M., Sweet M.B. Biochemical changes in intervertebral disc degeneration // Biochim. Biophys. Acta. 2009. Vol. 673. P. 443-453.
25. Marchand F., Ahmed A.M. Investigation of the laminate structure of lumbar disc anulus fibrosus // Spine. 2011. Vol. 15. P. 402-410.
26. Mason J.M., Breitbart A.S., Barcia M. [et al.] Cartilage and bone regeneration using gene-enhanced tissue engineering // Clin. Orthop. Relat. Res. 2008. Vol. 379, No. 1. P. 171-178.
27. Moon S.H., Nishida K., Gilbertson L.G. [et al.] Biologic response of human intervertebral disc cells to gene therapy cocktail // Spine. 2008. Vol. 17. P. 1850-1855.
28. Nagase H., Fushimi K. Elucidating the function of non catalytic domains of collagenases and aggrecanases // Connect. Tissue Res. 2008. Vol. 49, No. 3. P. 169-174.
29. Nishida K., Kang J.D., Gilbertson L.G. [et al.] Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene // Spine. 2009. Vol. 24. P. 2419-2425.
30. Nishida T. Kinetics of tissue and serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 in intervertebral disc degeneration and disc herniation // Kurume Med. J. 2010. Vol. 46. P. 39-50.
31. Okuda S., Myoui A., Ariga K. [et al.] Mechanisms of agerelated decline in insulin-like growth factor-I dependent proteoglycan synthesis in rat intervertebral disc cells // Spine. 2003. Vol. 26. P. 2421-2426.
32. Pattison S.T., Melrose J., Ghosh P. [et al.] Regulation of gelatinase-A (MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by transforming growth factor-beta(1)and insulin like growth factor-I // Cell. Biol. Int. 2011. Vol. 25. P. 679-689.
33. Reinecke J.A., Wehling P., Robbins P. [et al.] In vitro transfer of genes in spinal tissue // Z. Orthop. Ihre Grenzgeb. 2007. Vol. 135. P. 412-416.
34. Richardson S.M., Walker R.V., Parker S. [et al.] Intervertebral disc cell mediated mesenchymal stem cell differentiation // Stem. Cells. 2005. Vol. 24. P. 707-716.
35. Risbud M.V., Anderson D.G., Shapiro I.M. [et al.] Cell-based therapy for disc repair // Spine J. 2006. Vol. 5, No. 6. P. 297-303.
36. Ritter T., Lehmann M., Volk H.D. Improvements in gene therapy: averting the immune response to adenoviral vectors // Biodrugs. 2009. Vol. 16. P. 3-10.
37. Roberts S., Menage J., Duance V. [et al.] Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study // Spine. 2011. Vol. 16. P. 1030-1038.
38. Saal J.S., Franson R.C., Dobrow R. [et al.] High levels of inflammatory phholipase A2 activity in lumbar disc herniations // Spine. 2008. Vol. 15. P. 674-678.
39. Sakai D., Mochida J., Iwashina T. [et al.] Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc // Biomaterials. 2006. Vol. 27. P. 335-345.
40. Somia N., Verma I.M. Gene therapy: trials and tribulations // Nat. Rev. Genet. 2006. Vol. 1. P. 91-99.
41. Specchia N., Pagnotta A., Toesca A., Greco F. Cytokines and grow factors in the protruded intervertebral disc of the lumbar spine // Eur. Spine. J. 2012. Vol. 11. P. 145-151.
42. Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases // J. Pathol. 2013. Vol. 200, No. 4. P. 448-464.
43. Takahashi H., Suguro T., Okazima Y. [et al.] Inflammatory cytokines in the herniated disc of the lumbar spine // Spine. 2006. Vol. 21. P. 218-224.
44. Takegami K., An H.S., Kumano F. [et al.] Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis // Spine J. 2005. Vol. 5, No. 3. P. 231-238.
45. Trout J.J., Buckwalter J.A., Moore K.C. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus // Anat. Rec. 2010. Vol. 204. P. 307-314.
46. Wehling P., Schulitz K.P, Robbins PD. [et al.] Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy // Spine. 1997. Vol. 22. P. 1092-1097.
47. Weiler C., Nerlich A.G., Bachmeier B.E., Boos N. Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls // Spine. 2012. Vol. 30. P. 44-53.
48. Yu J., Fairbank J.C., Roberts S., Urban J.P The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc // Spine. 2012. Vol. 30, No. 16. P 1815-1820.
49. Yu J., Tirlapur U., Fairbank J. [et al.] Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc // J. Anat. 2009. Vol. 210, No. 4. P 460-471.
Рецензия
Для цитирования:
Бардонова Л.А., Белых Е.Г., Степанов И.А., Бывальцев В.А. Роль матричных металлопротеиназ и провоспалительных цитокинов в регенерации межпозвонкового диска. Тихоокеанский медицинский журнал. 2015;(4):21-25.
For citation:
Bardonova L.A., Belykh E.G., Stepanov I.A., Byval’Tsev V.A. Role of matrix matalloproteinases and proinflamatory cytokines in regeneration of the intervertebral disc. Pacific Medical Journal. 2015;(4):21-25. (In Russ.)