Preview

Pacific Medical Journal

Advanced search

DEVELOPMENT OF TECHNOLOGY FOR QUICK-DISSOLVING FORM OF SODIUM ALGINATE

Abstract

Brown algae polysaccharides - are the alginates widely used in food and pharmaceutical industries as health promoting medicines in case of poisoning with heavy metals salts and radionuclides. A significant shortcoming of the alginates is their poor solubility. The purpose of research is development of a method enhancing the sodium alginate solubility based on a transferring the part of uronic acids residues in the alginate molecule to the calcium salts form. Methods. The article covers the influence of calcium content on the alginate solubility. The researchers formed sorption isotherm of calcium ions by sodium alginate in the environment of 50 % ethanol and obtained the alginate samples containing from 0.2 to 6.82 % of calcium. Also they studied the hydrogels properties of the obtained samples of calcium alginate. Results. It was found that in the case of calcium content in the alginate less than 4.44 % a partial dissolution of the alginate gel starts, while calcium content less than 0.8 % promotes a complete dissolution. There have been also an estimation of dissolution rate for various alginate samples. Calcium alginate samples containing 0.2-0.8 % of calcium showed a higher rate of dissolution by 6.2-13.4 times than the original sodium alginate. Conclusions. Technology for producing incomplete calcium salts of alginates may be a new and very efficient approach to the problem of their solubility and, therefore, improvement of consumer properties.

About the Authors

V. V. Kovalev
Institute of Marine Biology named after A.V. Zhirmunskiy FEB RAS; Far Eastern Federal University
Russian Federation


R. Yu. Khotimchenko
Institute of Marine Biology named after A.V. Zhirmunskiy FEB RAS; Far Eastern Federal University
Russian Federation


E. A. Podkorytova
Institute of Marine Biology named after A.V. Zhirmunskiy FEB RAS
Russian Federation


E. V. Khozhaenko
Institute of Marine Biology named after A.V. Zhirmunskiy FEB RAS; Far Eastern Federal University
Russian Federation


References

1. Хасина Э.И., Требухов Е.Е., Хотимченко Ю.С., Ковалев В.В. Средство, обладающее адаптогенной активностью, и композиция на его основе. Патент на изобретение: RUS 2129010.

2. Хотимченко Ю.С., Хасина Э.И., Ковалев В.В. [и др.]. Эффективность пищевых некрахмальных полисахаридов при экспериментальном токсическом гепатите // Вопросы питания. 2000. Т. 69, № 1-2. С. 22-26.

3. Fliedner T.M. Nuclear terrorism: the role of hematology in coping with its health consequences // Current Opinion in Hematology. 2006. Vol. 13, No. 6. P. 436-444.

4. Harrison J. Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters // Journal of Radiological Protection. 2009. Vol. 29, No. 2A. P. A81-A105.

5. Hollriegl V., Rohmuss M., Oeh U., Roth P. Strontium biokinetics in humans: influence of alginate on the uptake of ingested strontium // Health Physics. 2004. Vol. 86, No. 2. P. 193-196.

6. Idota Y., Harada H., Tomono T. [et al.]. Alginate enhances excretion and reduces absorption of strontium and cesium in rats // Biological and Pharmaceutical Bulletin. 2013. Vol. 36, No. 3. P. 485-491.

7. Imanaka T., Fukutani S., Yamamoto M. [et al.]. Width and centeraxis location of the radioactive plume that passed over Dolon and nearby villages on the occasion of the first USSR A-bomb test in 1949 // Journal of Radiation Research. 2005. Vol. 46, No. 4. P. 395-399.

8. Khotimchenko M., Kovalev V., Khotimchenko Y. Comparative equilibrium studies of sorption of Pb(II) ions by sodium and calcium alginate // Journal of Environmental Sciences. 2008. Vol. 20, No. 7. P. 827-831.

9. Khotimchenko M., Serguschenko I., Khotimchenko Y. Lead absorption and excretion in rats given insoluble salts of pectin and alginate // International Journal of Toxicology. 2006. Vol. 25, No. 3. P. 195-203.

10. Khotimchenko M., Sergushchenko I., Khotimchenko Y. The effects of low-esterified pectin on lead-induced thyroid injury in rats // Environmental Toxicology and Pharmacology. 2004. Vol. 17, No. 2. P. 67-71.

11. Plazinski W. Molecular basis of calcium binding by polyguluronate chains. Revising the egg-box model // Journal of Computational Chemistry. 2011. Vol. 32, No. 14. P. 2988-2995.

12. Ricochon G., Elfassy A., Pages X. [et al.]. Correlation between the release of sugars and uronic acid and free oil recovery following enzymatic digestion of oil seed cell walls // Bioresource Technology. 2011. Vol. 102, No. 20. P. 9599-9604.

13. Sakaguchi A., Yamamoto M., Hoshi M. [et al.]. Radiological situation in the vicinity of Semipalatinsk nuclear test site: Dolon, Mostik, Cheremushka and Budene settlements // Journal of Radiation Research. 2006. Vol. 47. P. 101-116.

14. Scherthan H., Abend M., Muller K. [et al.]. Radiation-induced late effects in two affected individuals of the Lilo radiation accident // Radiation Research. 2007. Vol. 167, No. 5. P. 615-623.

15. Stram D.O., Kopecky K.J. Power and uncertainty analysis of epidemiological studies of radiation-related disease risk in which dose estimates are based on a complex dosimetry system: some observations // Radiation Research. 2003. Vol. 160, No. 4. P. 408-417.


Review

For citations:


Kovalev V.V., Khotimchenko R.Yu., Podkorytova E.A., Khozhaenko E.V. DEVELOPMENT OF TECHNOLOGY FOR QUICK-DISSOLVING FORM OF SODIUM ALGINATE. Pacific Medical Journal. 2014;(2):88-92. (In Russ.)

Views: 290


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)