Preview

Тихоокеанский медицинский журнал

Расширенный поиск

Биосовместимые матриксные имплантаты на основе природных и синтетических полимеров как перспективные средства для терапии дегенеративных и посттравматических заболеваний центральной нервной системы

Полный текст:

Аннотация

Обзор современных исследований и разработок в области создания биосовместимых имплантируемых материалов для терапии дегенеративных и посттравматических патологий центральной нервной системы. Проведен критический анализ материалов и их компонентов на основе природных и синтетических полимеров, применение которых в качестве матриксных имплантатов может способствовать восстановлению целостности поврежденного мозга, осуществлению заместительных и трофических функций, индукции репаративных процессов за счет внутренних и имплантируемых клеточных источников. Современное состояние биомедицинского материаловедения и тканевой инженерии для нужд нейротрансплантологии охарактеризовано в форме анализа способности материалов имитировать структуры и функции естественного внеклеточного матрикса, индуцировать нейрогенез и восстановление проводниковых функций нервной системы, а также способности материалов подвергаться контролируемой биодеградации с последующим замещением тканевыми структурами организма.

Об авторах

Ю. С. Хотимченко
Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения РАН; Дальневосточный федеральный университет
Россия


А. В. Щеблыкина
Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения РАН
Россия


В. В. Кумейко
Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения РАН; Дальневосточный федеральный университет
Россия


Список литературы

1. Brjuhoveckij I.S., Djujzen I.V., Motavkin PA. Morpho chemical characteristics of rats spinal cord after thoracic segmentectomy and transplantation polymeric collagen neuromatrix “Sferogel-E” with incorporated parietal neuroepithelial cells, Kletochnaja transplantol. i tkanevaja inzhenerija. 2008. Vol. 3, No. 2. P. 57-62.

2. Motavkin P.A. About changes in the lumbar and sacral spinal nodes with sciatic nerve injury, Arh. patol. 1959. No. 1. P. 34-44.

3. Motavkin P.A., Baranov V.F. The luminescent-microscopic assessment of RNA protoneyronov under retrograde reactions, Arh. anatomii, gistologii i jembriologii, 1971. V. LXI, No. 7. P. 70-73.

4. Motavkin P.A., Pigolkin Ju.I., Kaminskij Ju.V. The histophysiology circulation in the spinal cord. M.: Nauka, 1994. 233 p.

5. Motavkin P.A., Sidorova A.G., Baranov V.F. Wollers degeneration and reduction reactions of neurons extension cord // Dep. VINITI 04.11.1992. No. 3172-V92. 107 p.

6. Motavkin P.A., Chertok V.M. The histophysiology vascular mechanisms of cerebral circulation. M.: Medicina, 1980. 200 p.

7. Pigolkin Ju.I., Volodin S.A., Sherstjuk B.V et al. The morphofunctional characteristics of the spinal cord microvasculature under its experimental injury, Vopr. nejrohirurgii. 1989. No. 4. P. 30-31.

8. Jarygin V.I., Banin V.V., Jarygin K.I., Brjuhoveckij A.S. The regeneration of the rats spinal cord after thoracic segmentectomy: growth and repair of nerve conductors, Mor/ologija. 2006. V 129, No. 1. P. 30-38.

9. Brightman A.O., Rajwa B.P., Sturgis J.E. et al. Time-lapse con/ocal reflection microscopy o/collagen fibrillogenesis and extracellular matrix assembly in vitro // Biopolymers. 2000. Vol. 54, No. 3. P. 222-234.

10. Chen Y.G., Lee, M.W., Tu Y.H. et al. Surface coupling of long-chain hyaluronan to the fibrils of reconstituted type II collagen, Artificial Cells, Blood Substitutes, and Biotechnology. 2010. Vol. 37. P. 222-226.

11. Cui F.Z., Tian W.M., Fan Y.W. et al. Cerebrum repair with PHPMA hydrogel immobilized with neurite-promoting peptides in traumatic brain injury of adult rat model, Journal of Bioactive and Compatible Polymers. 2003. Vol. 18, No. 6. P. 413-432.

12. Cui F.Z., Tian W.M., Hou S.P et al. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering, Journal of Materials Science-Materials in Medicine. 2006. Vol. 17, No. 12. P. 1393-1401.

13. Cullen D.K., Lessing M.C., LaPlaca M.C. Collagen-dependent neurite outgrowth and response to dynamic deformation in threedimensional neuronal cultures, Annals of Biomedical Engineering. 2007. Vol. 35, No. 5. P. 835-846.

14. Dhoot N.O., Tobias C.A., Fischer I., Wheatley M.A. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth, Journal of Biomedical Materials Research Part A, 2004. Vol. 71A, No. 2. P 191-200.

15. Gillette B.M., Jensen J.A., Wang M.X. et al. Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices, Advanced Materials, 2010. Vol. 22, No. 6. P. 686-691.

16. Gros T., Sakamoto J.S., Blesch A. et al. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds, Biomaterials, 2010. Vol. 31, No. 26. P. 6719-6729.

17. Hahn M.S., Teply B.A., Stevens M.M. et al. Collagen composite hydrogels for vocal fold lamina propria restoration, Biomaterials, 2006. Vol. 27, No. 7. P. 1104-1109.

18. Hejcl A., Lesny P., Pradny M. et al. Biocompatible Hydrogels in Spinal Cord Injury Repair, Physiological research. 2008. Vol. 57. P. S121-S132.

19. Horn E.M., Beaumont M., Shu X.Z., et al. Influence of crosslinked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury, Journal of Neurosurgery-Spine. 2007. Vol. 6, No. 2. P 133-140.

20. Hou S., Tian W, Xu Q. et al. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro, Neuroscience. 2006. Vol. 137, No. 2. P. 519-529.

21. Hsu S.H., Su C.H., Chiu I.M. A novel approach to align adult neural stem cells on micropatterned conduits for peripheral nerve regeneration: a feasibility study, Artif. Organs. 2009. Vol. 33, No. 1. P 26-35.

22. Hunt D., Coffin R.S., Anderson P.N. The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review, Journal o/ Neurocytology. 2002. Vol. 31, No. 2. P. 93-120.

23. Jain A., Kim Y.T., McKeon R.J., Bellamkonda R.V. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury, Biomaterials. 2006. Vol. 27, No. 3. P. 497-504.

24. Kataoka K., Suzuki Y., Kitada M. et al. Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats, Journal of Biomedical Materials Research. 2001. Vol. 54, No. 3. P. 373-384.

25. Li X., Yang Z., Zhang A. et al. Repair ofthoracic spinal cord injury by chitosan tube implantation in adult rats, Biomaterials. 2009. Vol. 30. P. 1121-1132.

26. Liesi P, Kauppila T. Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar, Experimental Neurology. 2002. Vol. 173, No. 1. P. 31-45.

27. Lin Y.C., Tan F.J., Marra K.G. et al. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications, Acta Biomaterialia. 2009. Vol. 5. P. 2591-2600.

28. Ma W., Fitzgerald W., Liu Q.Y. et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels, Experimental Neurology. 2004. Vol. 190, No. 2. P. 276-288.

29. Mio K., Stern R. Inhibitors of the hyaluronidases, Matrix Biology. 2002. Vol. 21, No. 1. P. 31-37.

30. Necas J., Bartosikova L., Brauner P., Kolar J. Hyaluronic acid (hyaluronan): a review, Veterinarni Medicina. 2008. Vol. 53, No. 8. P. 397-411.

31. Novikova L.N., Mosahebi A., Wiberg M. et al. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation, Journal of Biomedical Materials, Research Part A. 2006. Vol. 77A, No. 2. P. 242-252.

32. Park J., Lim E., Back S. et al. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor, Journal o/ Biomedical Materials, Research Part A. 2010. Vol. 93A, No. 3. P. 1091-1099.

33. Park T.G., Lu W.Q., Crotts G. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (D,L-lactic acid-co-glycolic acid) microspheres, Journal o/ Controlled Release. 1995. Vol. 33, No. 2. P. 211-222.

34. Pinzon A., Calancie B., Oudega M., Noga B.R. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord, Journal o/Neuroscience Research. 2001. Vol. 64. P. 533-541.

35. Perris R., Syfrig J., Paulsson M., Bronnerfraser M. Molecular mechanisms of neural crest cell attachment and migration on types I and IV collagen, J. Cell Science. 1993. Vol. 106. P. 1357-1368.

36. Phillippi J.A., Miller E., Weiss L. et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations, Stem Cells. 2008. Vol. 26. P. 127-134.

37. Prang P., Muller R., Eljaouhari A. et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels, Biomaterials. 2006. Vol. 27, No. 19. P. 3560-3569.

38. Rochkind S., Shahar A., Fliss D. Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats, European Spine Journal. 2006. Vol. 15. P 234-245.

39. Sajjad S.M. Spinal cord regeneration via collagen entubulation: master’s thesis. Massachusetts institute of technology, 2004. 57 p.

40. Stokols S., Tuszynski M.H. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury, Biomaterials, 2004. Vol. 25, No. 27. P. 5839-5846.

41. Stokols S., Tuszynski M.H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury, Biomaterials. 2006. Vol. 27, No. 3. P. 443-451.

42. Surazynski A., Miltyk W., Czarnomysy R. et al. Hyaluronic acid abrogates nitric oxide-dependent stimulation of collagen degradation in cultured human chondrocytes, Pharmacological Research. 2009. Vol. 60, No. 1. P. 46-49.

43. Suri S., Schmidt C.E. Cell-Laden Hydrogel Constructs of Hyaluronic Acid, Collagen, and Laminin for Neural Tissue Engineering, Tissue Engineering, Part A. 2010. Vol. 16, No. 5. P. 1703-1716.

44. Teng Y.D., Lavik E.B., Qu X.L. et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells, Proceedings of the National Academy of Sciences of the United States of America. 2002. Vol. 99, No. 14. P. 3024-3029.

45. Ulrich T. A., Jain A., Tanner K. et al. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices, Biomaterials. 2010. Vol. 31. P 1875-1884.

46. Wang W.H., Zhang M., Lu W. et al. Cross-linked Collagen-Chondroitin Sulfate-Hyaluronic Acid Imitating Extracellular Matrix as Scaffold for Dermal Tissue Engineering, Tissue Eng. Part C-Methods. 2010. Vol. 16. P. 269-279.

47. Wei Y.T., He Y., Xu C.L. et al. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-(L)-lysine to promote axon regrowth after spinal cord injury, Journal of Biomedical Materials Research, Part B-Applied Biomaterials. 2010. Vol. 95B, No. 1. P. 110-117.

48. Woerly S., Doan V., Evans-Martin F. et al. Spinal cord reconstruction using NeuroGel (TM) implants and functional recovery after chronic injury, Journal of Neuroscience Research. 2001. Vol. 66, No. 6. P1187-1197.

49. Woerly S., Pinet E., de Robertis L. et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel), Biomaterials. 2001. Vol. 22, No. 10. P 1095-1111.

50. Woerly S., Doan V.D., Sosa N. et al. Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord, Journal of Neuroscience Research. 2004. Vol. 75, No. 2. P. 262-272.

51. Xiao M., Klueber K.M., Lu C. et al. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery, Exp. Neurol. 2005. Vol. 194. P. 12-30.

52. Yoshil S., Ito S., Shima M. et al. Functional restoration of rabbit spinal cord using collagen-filament scaffold, Journal of Tissue Engineering and Regenerative Medicine. 2009. Vol. 3, No. 1. P. 19-25.


Для цитирования:


Хотимченко Ю.С., Щеблыкина А.В., Кумейко В.В. Биосовместимые матриксные имплантаты на основе природных и синтетических полимеров как перспективные средства для терапии дегенеративных и посттравматических заболеваний центральной нервной системы. Тихоокеанский медицинский журнал. 2012;(2):54-60.

For citation:


Khotimchenko Yu.S., Scheblyikina A.V., Kumeiko V.V. BIOCOMPATIBLE MATRIX IMPLANTS FROM NATURAL AND SYNTHETIC POLYMERS AS PROMISING PRODUCTS INTENDED FOR TREATMENT OF DEGENERATIVE AND POST-INJURY DISEASES OF CENTRAL NERVOUS SYSTEM. Pacific Medical Journal. 2012;(2):54-60. (In Russ.)

Просмотров: 104


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)