Preview

Тихоокеанский медицинский журнал

Расширенный поиск

Диагностика и контроль клеточного иммунитета пациентов с туберкулезом

https://doi.org/10.34215/1609-1175-2021-2-19-24

Полный текст:

Аннотация

 Туберкулез – одно из самых смертоносных и заразных заболеваний человека. Заболеваемость туберкулезом увеличилась из-за появления штаммов, устойчивых к лекарствам, и сочетания туберкулеза и ВИЧ. Последние технологические достижения, в том числе те, которые  используются для борьбы с туберкулезом, раздвинули границы  нашего понимания взаимодействия организма-хозяина и  патогена. Эта информация позволяет лучше понять, как  работает врожденный и адаптивный иммунитет при  туберкулезе. Появляется возможность разработать новые  методы лабораторной диагностики и наблюдения за больными  туберкулезом и больными с подозрением на туберкулез. В  обзоре представлены последние данные о функционировании иммунной системы при туберкулезе и новые подходы к  диагностике этого заболевания. 

Об авторах

И. А. Корсунский
Детская городская клиническая больница № 9 им. Г. Н. Сперанского
Россия

 д-р мед. наук, заведующий центром аллергологии и иммунологии

123317, г. Москва, Шмитовский пр-д, 29



Д. А. Кудлай
Первый Московский государственный медицинский университет им. И.М. Сеченова; Государственный научный центр «Институт иммунологии» ФМБА России
Россия

д-р мед. наук, профессор кафедры фармакологии Института фармации; ведущий научный сотрудник лаборатории персонализированной медицины и молекулярной иммунологии № 71

119991, г. Москва, ул. Трубецкая, 8/2

115478, г. Москва, Каширское шоссе, 24



Список литературы

1. Covert BA, Spencer JS, Orme IM, Belisle JT. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics. 2001;1(4):574–86.

2. Boesen H, Jensen BN, Wilcke T, Andersen P. Human T-cell responses to secreted antigen fractions of Mycobacterium tuberculosis. Infect Immun. 1995;63(4):1491–7.

3. Samarghitean C, Vihinen M. Bioinformatics services related to diagnosis of primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2009;9(6):531–6.

4. Lalvani A, Nagvenkar P, Udwadia Z, Pathan AA, Wilkinson KA, Shastri JS, et al. Enumeration of T cells specific for RD1‐encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians. J Infect Dis. 2001;183(3):469–77.

5. Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G, et al. Direct ex vivo analysis of antigen-specific IFN-γ-secreting CD4 T cells in Mycobacterium tuberculosisinfected individuals: Associations with clinical disease state and effect of treatment. J Immunol. 2001;167(9):5217–25.

6. McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG- primed and naturally acquired antimycobacterial immunity in humans. Nat Med. 2004;10(11):1240–4.

7. Abel B, Tameris M, Mansoor N, Gelderbloem S, Hughes J, Abrahams D, et al. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am J Resp Crit Care Med. 2010;181(12):1407–17.

8. Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, et al. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog. 2013;9(1):e1003130. doi: 10.1371/journal.ppat.1003130

9. Carpenter C, Sidney J, Kolla R, Nayak K, Tomiyama H, Tomiyama C, et al. A side-by-side comparison of T cell reactivity to fifty-nine Mycobacterium tuberculosis antigens in diverse populations from five continents. Tuberculosis. 2015;95(6):713–21.

10. Lindestam Arlehamn CS, Paul S, Mele F, Huang C, Greenbaum JA, Vita R, et al. Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes. Proc Natl Acad Sci. 2015;112(2):E147–55.

11. Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O’rie T, et al. Functional capacity of mycobacterium tuberculosisspecific T cell responses in humans is associated with Mycobacterial load. J Immunol. 2011;187(5):2222–32.

12. Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, et al. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol. 2013;43(6):1568–77.

13. Rozot V, Patrizia A, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, et al. Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis. Clin Infect Dis. 2015;60(3):432–7.

14. Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol. 2008;8(4):247–58.

15. Harari A, Rozot V, Enders FB, Perreau M, Stalder JM, Nicod LP, et al. Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med. 2011;17(3):372–6.

16. Riou C, Gray CM, Lugongolo M, Gwala T, Kiravu A, Deniso P, et al. A subset of circulating blood mycobacteria-specific CD4 T cells can predict the time to Mycobacterium tuberculosis sputum culture conversion. PLoS ONE. 2014;9(7):e102178. doi: 10.1371/journal.pone.0102178

17. Sutherland JS, Adetifa IM, Hill PC, Adegbola RA, Ota MOC. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol. 2009;39(3):723–9.

18. Caccamo N, Guggino G, Joosten SA, Gelsomino G, Di Carlo P, Titone L, et al. Multifunctional CD4+ T cells correlate with active Mycobacterium tuberculosis infection. Eur J Immunol. 2010;40(8):2211–20.

19. Mueller H, Detjen AK, Schuck SD, Gutschmidt A, Wahn U, Magdorf K, et al. Mycobacterium tuberculosis-specific CD4+, IFNγ+, and TNFα+ multifunctional memory T cells coexpress GM-CSF. Cytokine. 2008;43(2):143–8.

20. Kagina BMN, Abel B, Scriba TJ, Hughes EJ, Keyser A, Soares A, et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after Bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med. 2010;182(8):1073–9.

21. Fletcher HA, Snowden MA, Landry B, Rida W, Satti I, Harris SA, et al. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun. 2016;7(1):11290.

22. Adekambi T, Ibegbu CC, Cagle S, Kalokhe AS, Wang YF, Hu Y, et al. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J Clin Investig. 2015; 125(5):1827–38.

23. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: A randomised, placebo-controlled phase 2b trial. Lancet. 2013; 381(9871):1021–8.

24. Hawn TR, Day TA, Scriba TJ, Hatherill M, Hanekom WA, Evans TG, et al. Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev. 2014;78(4):650–71.

25. Andrews JR, Hatherill M, Mahomed H, Hanekom WA, Campo, Hawn TR, Wood R, Scriba TJ. The dynamics of QuantiFERONTB Gold In-Tube conversion and reversion in a cohort of South African adolescents. Am J Resp Crit Care Med. 2015;191(5):584–91.

26. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med. 2018;379(2):138–49.

27. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA. 1999;282(7):677–86.

28. Esmail H, Barry 3rd CE, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130437. doi: 10.1098/rstb.2013.0437

29. Perley CC, Frahm M, Click EM, Dobos KM, Ferrari G, Stout JE, Frothingham R. The human antibody response to the surface of Mycobacterium tuberculosis. PLoS ONE. 2014;9(6):e98938. doi: 10.1371/journal.pone.0098938

30. Yu X, Prados-Rosales R, Jenny-Avital ER, Sosa K, Casadevall A, Achkar JM. Comparative evaluation of profiles of antibodies to Mycobacterial capsular polysaccharides in tuberculosis patients and controls stratified by HIV status. Clin Vaccine Immunol. 2012;19(2):198–208.

31. Baumann R, Kaempfer S, Chegou NN, Oehlmann W, Spallek R, Loxton AG, et al. A subgroup of latently Mycobacterium tuberculosis infected individuals is characterized by consistently elevated IgA responses to several mycobacterial antigens. Mediat Inflamm. 2015. doi: 10.1155/2015/364768

32. Pai M, Denkinger CM, Kik SV., Rangaka MX, Zwerling A, Oxlade O, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20.

33. Hur Y-G, Kim A, Kang YA, Kim AS, Kim DY, Kim Y, et al. Evaluation of antigen-specific immunoglobulin G responses in pulmonary tuberculosis patients and contacts. J Clin Microbiol. 2015;53(3):904–9.

34. Bothamley GH, Beck JS, Potts RC, Grange JM, Kardjito T, Ivanyi J. Specificity of antibodies and tuberculin response after occupational exposure to tuberculosis. J Infect Dis. 1992; 166(1):182–6.

35. Blackwell TK, Alt FW. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu Rev Genet. 1989;23(1):605–36.

36. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396(6712):690–5.

37. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.

38. van Zelm MC, Szczepański T, van der Burg M, van Dongen JJM. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med. 2007;204(3):645–55.

39. Корсунский И.А., Гордукова М.А., Мунблит Д.Б., Козлов И.Г., Продеус А.П., Корсунский А.А. Клинические эпидемиологические аспекты первичных иммунодефицитных состояний и их раннего обнаружения. Медицинская иммунология. 2017;19(5):505–12.

40. Korsunskiy I, Blyuss O, Gordukova M, Davydova N, Gordleeva S, Molchanov R, et al. TREC and KREC levels as a predictors of lymphocyte subpopulations measured by flow cytometry. Front Physiol. 2019. doi: 10.3389/fphys.2018.01877


Для цитирования:


Корсунский И.А., Кудлай Д.А. Диагностика и контроль клеточного иммунитета пациентов с туберкулезом. Тихоокеанский медицинский журнал. 2021;(2):19-24. https://doi.org/10.34215/1609-1175-2021-2-19-24

For citation:


Korsunskiy I.A., Kudlay D.A. Diagnostics and control of cellular immunity of patients having tuberculosis. Pacific Medical Journal. 2021;(2):19-24. (In Russ.) https://doi.org/10.34215/1609-1175-2021-2-19-24

Просмотров: 21


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)