Diagnostics and control of cellular immunity of patients having tuberculosis
https://doi.org/10.34215/1609-1175-2021-2-19-24
Abstract
Tuberculosis is one of the most deadly and contagious diseases for people. Tuberculosis disease rate has increased because of the emergence of drug-resistant strains and HIV co-infection. Last technological achievements including those used to cure tuberculosis have extended our understanding of the interaction between the host organism and pathogen. This information allows getting a better understanding of how natural and adaptive immunities work in the presence of tuberculosis. It gives an opportunity to develop new methods of laboratory diagnostics and observe tuberculosis patients and patients having suspected tuberculosis. Latest research data on immune system functioning in case of tuberculosis and new approaches to diagnosing tuberculosis are presented in the survey.
About the Authors
I. A. KorsunskiyRussian Federation
MD, PhD, head of the Center for Allergology and Immunology
20 Shmitovsky Pr., Moscow, 123317, Russian Federation
D. A. Kudlay
Russian Federation
MD, PhD, professor of the Pharmacology Department; leading researcher of the Laboratory of Personalized Medicine and Molecular Immunology No. 71
8/2 Trubetskaya St., Moscow, 119991, Russian Federation
24 Kahirskoe Shosse, Moscow, 115478, Russian Federation
References
1. Covert BA, Spencer JS, Orme IM, Belisle JT. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics. 2001;1(4):574–86.
2. Boesen H, Jensen BN, Wilcke T, Andersen P. Human T-cell responses to secreted antigen fractions of Mycobacterium tuberculosis. Infect Immun. 1995;63(4):1491–7.
3. Samarghitean C, Vihinen M. Bioinformatics services related to diagnosis of primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2009;9(6):531–6.
4. Lalvani A, Nagvenkar P, Udwadia Z, Pathan AA, Wilkinson KA, Shastri JS, et al. Enumeration of T cells specific for RD1‐encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians. J Infect Dis. 2001;183(3):469–77.
5. Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G, et al. Direct ex vivo analysis of antigen-specific IFN-γ-secreting CD4 T cells in Mycobacterium tuberculosisinfected individuals: Associations with clinical disease state and effect of treatment. J Immunol. 2001;167(9):5217–25.
6. McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG- primed and naturally acquired antimycobacterial immunity in humans. Nat Med. 2004;10(11):1240–4.
7. Abel B, Tameris M, Mansoor N, Gelderbloem S, Hughes J, Abrahams D, et al. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am J Resp Crit Care Med. 2010;181(12):1407–17.
8. Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, et al. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog. 2013;9(1):e1003130. doi: 10.1371/journal.ppat.1003130
9. Carpenter C, Sidney J, Kolla R, Nayak K, Tomiyama H, Tomiyama C, et al. A side-by-side comparison of T cell reactivity to fifty-nine Mycobacterium tuberculosis antigens in diverse populations from five continents. Tuberculosis. 2015;95(6):713–21.
10. Lindestam Arlehamn CS, Paul S, Mele F, Huang C, Greenbaum JA, Vita R, et al. Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes. Proc Natl Acad Sci. 2015;112(2):E147–55.
11. Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O’rie T, et al. Functional capacity of mycobacterium tuberculosisspecific T cell responses in humans is associated with Mycobacterial load. J Immunol. 2011;187(5):2222–32.
12. Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, et al. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol. 2013;43(6):1568–77.
13. Rozot V, Patrizia A, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, et al. Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis. Clin Infect Dis. 2015;60(3):432–7.
14. Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol. 2008;8(4):247–58.
15. Harari A, Rozot V, Enders FB, Perreau M, Stalder JM, Nicod LP, et al. Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med. 2011;17(3):372–6.
16. Riou C, Gray CM, Lugongolo M, Gwala T, Kiravu A, Deniso P, et al. A subset of circulating blood mycobacteria-specific CD4 T cells can predict the time to Mycobacterium tuberculosis sputum culture conversion. PLoS ONE. 2014;9(7):e102178. doi: 10.1371/journal.pone.0102178
17. Sutherland JS, Adetifa IM, Hill PC, Adegbola RA, Ota MOC. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol. 2009;39(3):723–9.
18. Caccamo N, Guggino G, Joosten SA, Gelsomino G, Di Carlo P, Titone L, et al. Multifunctional CD4+ T cells correlate with active Mycobacterium tuberculosis infection. Eur J Immunol. 2010;40(8):2211–20.
19. Mueller H, Detjen AK, Schuck SD, Gutschmidt A, Wahn U, Magdorf K, et al. Mycobacterium tuberculosis-specific CD4+, IFNγ+, and TNFα+ multifunctional memory T cells coexpress GM-CSF. Cytokine. 2008;43(2):143–8.
20. Kagina BMN, Abel B, Scriba TJ, Hughes EJ, Keyser A, Soares A, et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after Bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med. 2010;182(8):1073–9.
21. Fletcher HA, Snowden MA, Landry B, Rida W, Satti I, Harris SA, et al. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun. 2016;7(1):11290.
22. Adekambi T, Ibegbu CC, Cagle S, Kalokhe AS, Wang YF, Hu Y, et al. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J Clin Investig. 2015; 125(5):1827–38.
23. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: A randomised, placebo-controlled phase 2b trial. Lancet. 2013; 381(9871):1021–8.
24. Hawn TR, Day TA, Scriba TJ, Hatherill M, Hanekom WA, Evans TG, et al. Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev. 2014;78(4):650–71.
25. Andrews JR, Hatherill M, Mahomed H, Hanekom WA, Campo, Hawn TR, Wood R, Scriba TJ. The dynamics of QuantiFERONTB Gold In-Tube conversion and reversion in a cohort of South African adolescents. Am J Resp Crit Care Med. 2015;191(5):584–91.
26. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med. 2018;379(2):138–49.
27. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA. 1999;282(7):677–86.
28. Esmail H, Barry 3rd CE, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130437. doi: 10.1098/rstb.2013.0437
29. Perley CC, Frahm M, Click EM, Dobos KM, Ferrari G, Stout JE, Frothingham R. The human antibody response to the surface of Mycobacterium tuberculosis. PLoS ONE. 2014;9(6):e98938. doi: 10.1371/journal.pone.0098938
30. Yu X, Prados-Rosales R, Jenny-Avital ER, Sosa K, Casadevall A, Achkar JM. Comparative evaluation of profiles of antibodies to Mycobacterial capsular polysaccharides in tuberculosis patients and controls stratified by HIV status. Clin Vaccine Immunol. 2012;19(2):198–208.
31. Baumann R, Kaempfer S, Chegou NN, Oehlmann W, Spallek R, Loxton AG, et al. A subgroup of latently Mycobacterium tuberculosis infected individuals is characterized by consistently elevated IgA responses to several mycobacterial antigens. Mediat Inflamm. 2015. doi: 10.1155/2015/364768
32. Pai M, Denkinger CM, Kik SV., Rangaka MX, Zwerling A, Oxlade O, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20.
33. Hur Y-G, Kim A, Kang YA, Kim AS, Kim DY, Kim Y, et al. Evaluation of antigen-specific immunoglobulin G responses in pulmonary tuberculosis patients and contacts. J Clin Microbiol. 2015;53(3):904–9.
34. Bothamley GH, Beck JS, Potts RC, Grange JM, Kardjito T, Ivanyi J. Specificity of antibodies and tuberculin response after occupational exposure to tuberculosis. J Infect Dis. 1992; 166(1):182–6.
35. Blackwell TK, Alt FW. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu Rev Genet. 1989;23(1):605–36.
36. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396(6712):690–5.
37. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.
38. van Zelm MC, Szczepański T, van der Burg M, van Dongen JJM. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med. 2007;204(3):645–55.
39. Korsunskiy IA, Gordukova MA, Kozlov IG, Prodeus AP, Korsunskiy AA. Clinical and epidemiological aspects of primary immunodeficiency diseases (PID) and early diagnosis options. Medical Immunology. 2017;19(5):505–12 (In Russ).
40. Korsunskiy I, Blyuss O, Gordukova M, Davydova N, Gordleeva S, Molchanov R, et al. TREC and KREC levels as a predictors of lymphocyte subpopulations measured by flow cytometry. Front Physiol. 2019. doi: 10.3389/fphys.2018.01877
Review
For citations:
Korsunskiy I.A., Kudlay D.A. Diagnostics and control of cellular immunity of patients having tuberculosis. Pacific Medical Journal. 2021;(2):19-24. (In Russ.) https://doi.org/10.34215/1609-1175-2021-2-19-24