Preview

Pacific Medical Journal

Advanced search

Bioactive coatings on metallic alloys and stimulation of bone repair after fracture

https://doi.org/10.34215/1609-1175-2021-2-31-36

Abstract

 The survey of the literature data and authors’ research on molecular-cell mechanisms of the osteoinductive effect of calcium-phosphate compounds and their importance during fracture healing. The usage of titanium implants containing calcium-phosphate and hydroxyapatite covering leads to structural transformation of the bony tissue in the interstitial gap and activation of the reparative processes. This activities correlate with the changes in expression of morphogenetic and apoptotic factors in different stages of the reparative osteogenesis. Reparative effect of the calcium-phosphate compounds can be estimated as a sum of cambial activity CD44-reactive mesenchymal stem cells and secondary fracture spread – the apoptosis of the cells of bone regenerate. The interaction of these processes in each stage of bone healing provides bone morphogenetic proteins, vascular endothelial growth factor and transformative growth-factor-β. Current issues of the metal alloy with bioresorbable covering for the long bones healing are discussed. 

About the Authors

R. Ye. Kostiv
Pacific State Medical University
Russian Federation

MD, PhD, associate professor, Institute of Surgery

2 Ostryakova Ave., Vladivostok, 690002, Russian Federation



N. Yu. Matveeva
Pacific State Medical University
Russian Federation

 MD, PhD, head of the Department of Histology, Embryology and Cytology 

2 Ostryakova Ave., Vladivostok, 690002, Russian Federation



S. G. Kalinichenko
Pacific State Medical University
Russian Federation

MD, PhD, professor, Department of Histology, Embryology, and Cytology

2 Ostryakova Ave., Vladivostok, 690002, Russian Federation



References

1. Payushina OV, Starostin VI, Hrushchov NG. Multipotentnye mezenhimnye stromalnye kletki: harakteristika, potencii k differencirovke i perspektivy klinicheskogo ispolzovaniya. Biologiya stvolovyh kletok i kletochnye tekhnologii. Moscow: Medicina; 2009; Vol. 2:100–23 (In Russ).

2. Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors. 2020;46(3):326–40.

3. Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Func. 2013;31:1–11.

4. Olivares-Navarrete R, Hyzy SL, Haithcock DA, Cundiff CA, Schwartz Z, Boyan BD. Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins. Bone. 2015;73:208–16.

5. Bolander J, Chai YC, Geris L, Schrooten J, Lambrechts D, Roberts SJ, Luyten FP. Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates. Biomaterials. 2016;86:106–18.

6. Shirakura M, Kram V, Robinson J, Sikka S, Kilts TM, Wadhwa S, Young MF. Extracellular matrix mediates BMP-2 in a model of temporomandibular joint osteoarthritis. Cells Tissues Organs. 2017;204(2):84–92.

7. Matsubara H, Hogan DE, Morgan EF, Mortlock DP, Einhorn TA, Gerstenfeld LC. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone. 2012;51:168–80.

8. Dole NS, Mazur CM, Acevedo C, Lopez JP, Monteiro DA, Fowler TW, et al. Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep. 2017;21(9):2585–96.

9. Balmayor ER. Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev. 2015;94:13–27.

10. Li D, Zhang K, Shi C, Liu L, Yan G, Liu C, et al. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. Int J Nanomedicine. 2018;13:7167–81.

11. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(Suppl 2):S96–101.

12. García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–21.

13. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016;98-B(1 Suppl A):6–9.

14. Gnezdenkov SV, Sharkeev YuP, Sinebryukhov SL, Khrisanforova OA, Legostaeva EV, Zavidnaya AG, et al. Functional coatings for implants. Pacific Medical Journal. 2012;1:12–9 (In Russ).

15. Kostiv RE, Kalinichenko SG, Matveeva NYu, Kostiv EP, Puz AV. Osteogenesis properties of calciumphosphate coating on titanium alloy TI-6AL-4V in vivo. Modern problems of the development of fundamental and applied sciences. Materials of the I International Scientific and Practical Conference. 2016;33–6 (In Russ).

16. Cheng L, Ye F, Yang R, Lu X, Shi Y, Li L, et al. Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010;6(4):1569–74.

17. Kalinichenko SG, Matveeva NYu, Kostiv RE, Puz’ AV. Role of vascular endothelial growth factor and transforming growth factor-β2 in rat bone tissue after bone fracture and placement of titanium implants with bioactive bioresorbable coatings. Bulletin of Experimental Biology and Medicine. 2017;162(5): 671–5 (In Russ).

18. Nickel J, Mueller TD. Specification of BMP signaling. Cells. 2019;8(12):1579. doi: 10.3390/cells8121579

19. Matveeva NYu, Kostiv RE, Kalinichenko SG, Puz AV, Plechova NG. Dynamics of regeneration of a broken hipbone of rats with the use of the titanium implant with the active surface cover. International Journal of Applied and Fundamental Research. 2015;10–5:849–53 (In Russ).

20. Kalinichenko SG, Matveeva NY, Kostiv RE, Edranov SS. The effect of calcium phosphate biodegradable coatings of titanium implants on cell differentiation and apoptosis in rat bone tissue after experimental fracture. Biomed Mater Eng. 2021; 32(1):53–62.

21. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597–605.

22. Wang X, Kua H-Y, Hu Y, Guo K, Zeng Q, Wu Q, et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblastdependent osteoclastogenesis, and bone remodeling. J Cell Biol. 2006;172(1):115–25.

23. Komori T. Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci. 2016;17(12):2045. doi: 10.3390/ijms17122045

24. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.

25. Li X, White G, Connolly C, Marsh D. Cell proliferation and apoptosis during fracture healing. J Bone Miner Res. 2002;17(5):791–9.

26. Dumic-Cule I, Peric M, Kucko L, Grgurevic L, Pecina M, Vukicevic S. Bone morphogenetic proteins in fracture repair. Int Orthop. 2018;42(11):2619–26.

27. Kalinichenko SG, Matveeva NY, Kostiv RE, Edranov SS. The topography and proliferative activity of cells immunoreactive to various growth factors in rat femoral bone tissues after experimental fracture and implantation of titanium implants with bioactive biodegradable coatings. Biomed Mater Eng. 2019;30(1):85–95.

28. Economou AD, Hill CS. Temporal dynamics in the formation and interpretation of Nodal and BMP morphogen gradients. Curr Top Dev Biol. 2020;137:363–89.

29. Beutel BG, Danna NR, Granato R, Bonfante EA, Marin C, Tovar N, et al. Implant design and its effects on osseointegration over time within cortical and trabecular bone. J Biomed Mater Res B Appl Biomater. 2016;104(6):1091–7.

30. Aravamudhan A, Ramos DM, Nip J, Subramanian A, James R, Harmon MD, et al. Osteoinductive small molecules: growth factor alternatives for bone tissue engineering. Cur Pharm Des. 2013;19:3420–8.

31. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblastosteoclast interactions. Connect Tissue Res. 2018;59(2):99–107.

32. Grgurevic L, Christensen GL, Schulz TJ, Vukicevic S. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev. 2016;27:105–8.

33. Kowalczewski CJ, Saul JM. Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Front Pharmacol. 2018;9:513. doi: 10.3389/fphar.2018.00513

34. Hyzy SL, Olivares-Navarrete R, Ortman S. Boyan BD, Schwartz Z. Bone morphogenetic protein 2 alters osteogenesis and antiinflammatory profiles of mesenchymal stem cells induced by microtextured titanium in vitro. Tissue Engineering: Part A. 2017;23(19, 20):1132–41.

35. Костив Р.Е., Калиниченко С.Г., Матвеева Н.Ю. Трофические факторы роста костной ткани, их морфогенетическая характеристика и клиническое значение. Тихоокеанский медицинский журнал. 2017;1:10–6. [Kostiv RE, Kalinichenko SG, Matveeva NYu. Trophic factors of bone growth, their morphogenetic characterization and clinical significance. Pacific Medical Journal. 2017;1:10–6 (In Russ).]

36. Haumer A, Bourgine PE, Occhetta P, Born G, Tasso R, Martin I. Delivery of cellular factors to regulate bone healing. Adv Drug Deliv Rev. 2018;129:285–94.

37. Awale G, Wong E, Rajpura K, W-H Lo K. Engineered bone tissue with naturally-derived small molecules. Curr Pharm Des. 2017;23(24):3585–94.

38. Hankenson KD, Gagne K, Shaughnessy M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev. 2015;94:3–12.

39. Jain A.P., Pundir S., Sharma A. Bone morphogenetic proteins: the anomalous molecules. J Indian Soc Periodontol. 2013;17(5):583–6.

40. Han QQ, Du Y, Yang PS. The role of small molecules in bone regeneration. Future Med Chem. 2013;5(14):1671–84.


Review

For citations:


Kostiv R.Ye., Matveeva N.Yu., Kalinichenko S.G. Bioactive coatings on metallic alloys and stimulation of bone repair after fracture. Pacific Medical Journal. 2021;(2):31-36. (In Russ.) https://doi.org/10.34215/1609-1175-2021-2-31-36

Views: 267


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)