Glutamatergic system dysfunction in the pathophysiology of diabetic encephalopathy
https://doi.org/10.34215/1609-1175-2023-3-15-19
Abstract
Diabetes mellitus (DM) is a highly prevalent endocrine disease with a high risk of chronic complications. Damage to the central nervous system (CNS) is considered a serious DM complication. Diabetic encephalopathy (DE) is a specific CNS dysfunction that is characterized by impaired functioning of the brain. The root cause of DE may lie in a disrupted synthesis of various neurotransmitters. Impaired operation of the glutamatergic system is the key component of the pathophysiological mechanism responsible for the development of cerebral insufficiency in the setting of DM. Glutamine (Gln) is the main excitatory neurotransmitter of the CNS, which is involved in the processes of synaptic plasticity, learning and memory. Under physiological conditions, Gln concentrations must be kept at a minimum to ensure optimal operation of the brain. The activation of the glutamatergic system observed in DM is associated with neurotoxicity, leading to degeneration and death of neuronal cells. Excitotoxicity triggers the endoplasmic reticulum stress response, causes mitochondrial dysfunction and elevates oxidative stress. These are the three key pathophysiological mechanisms thought to underlie the development of DE. Oxidative stress is the most thoroughly studied of the pathological processes leading to DE, and is associated with damage to intracellular proteins, lipids and nucleic acids, resulting in the loss of neurons. Numerous preclinical and clinical studies have demonstrated the presence of a pathophysiological link between the activation of the glutamatergic system, excitotoxic mechanisms, and the development of DE. High levels of Gln were shown to correlate with deterioration of cognition, which intensifies with the course of the disease. Diagnosis and subsequent treatment of glutamatergic system dysfunction in patients with DM can be an important practical contribution to the minimization of clinical DE manifestations.
About the Authors
Yu. V. BykovRussian Federation
Yuri V. Bykov, Cand. Sci. (Med.), Assistent of Dept. of anesthesiology and intensive care with postgraduate course
310 Mira str., Stavropol 355017, Russia
tel. +7 (962) 443-04-92
V. A. Baturin
Russian Federation
310 Mira str., Stavropol 355017, Russia
References
1. Zhao X, Han Q, Gang X, Wang G. Altered brain metabolites in patients with diabetes mellitus and related complications – evidence from 1H MRS study. Biosci Rep. 2018;38(5):20180660. doi: 10.1042/BSR20180660
2. Nagayach A, Patro N, Patro I. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function. Front Cell Neurosci. 2014;8:355. doi: 10.3389/fncel.2014.00355
3. Bykov YuV. Type I diabetes mellitus in pediatric practice and damage of the central nervous system. Tauride medico-biological Bulletin. 2020;4 (23):91–8 (In Russ.). doi: 10.37279/2070-8092-2020-23-4-91-97
4. Duarte J.M. Metabolism in the diabetic brain: neurochemical profiling by 1H magnetic resonance spectroscopy. J Diabetes Metab Disord. 2016;3:11. doi: 10.24966/DMD-201X/100011
5. Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci. 2015;1353(1):60–71. doi: 10.1111/nyas.12807
6. Roberts RO, Knopman DS, Cha RH, Mielke MM, Pankratz VS, Boeve BF, Kantarci K, Geda YE, Jack Jr CR, Petersen RC, Lowe VJ. Diabetes and elevated hemoglobin A1c levels are associated with brain hypometabolism but not amyloid accumulation. J Nucl Med. 2014;55:759–64. doi: 10.2967/jnumed.113.132647
7. Marder TJ, Flores VL, Bolo NR, Hoogenboom WS, Simonson DC, Jacobson AM, Foote SE, Shenton ME, Sperling RA, Musen G. Task-induced brain activity patterns in type 2 diabetes: a potential biomarker for cognitive decline. Diabetes. 2014;63:3112–9. doi: 10.2337/db13-1783
8. Wang C, Li J, Zhao S, Huang L. Diabetic encephalopathy causes the imbalance of neural activities between hippocampal glutamatergic neurons and GABAergic neurons in mice. Brain Res. 2020;1742:146863. doi: 10.1016/j.brainres.2020.146863
9. Fried PJ, Pascual-Leone A, Bolo NR. Diabetes and the link between neuroplasticity and glutamate in the aging human motor cortex. Clin Neurophysiol. 2019;130(9):1502–10. doi: 10.1016/j.clinph.2019.04.721
10. Ravona-Springer R, Luo X, Schmeidler J, Wysocki M, Lesser G, Rapp M, Dahlman K, Grossman H, Haroutunian V, Beeri MS. Diabetes is associated with increased rate of cognitive decline in questionably demented elderly. Dement Geriatr Cogn Disord. 2010;29:68–74. doi: 10.1159/000265552
11. Cukierman-Yaffe T. Diabetes, dysglycemia and cognitive dysfunction. Diabetes Metab Res Rev. 2014;30(5):341–5. doi: 10.1002/dmrr.2507
12. Han WN, Hölscher C, Yuan L, Yang W, Wang XH, Wu MN, Qi JS, Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol Aging. 2013;2:576–88. doi: 10.1016/j.neurobiolaging.2012.04.009
13. Gaspar JM, Baptista FI, Macedo MP, Ambrosio AF. Inside the diabetic brain: role of different players involved in cognitive decline. ACS Che. Neurosci. 2016;7:131–42. doi: 10.1021/acschemneuro.5b00240
14. Xu X, Sun J, Chang X, Wang J, Luo M, Wintergerst KA, Miao L, Cai L. Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China. J Cell Mol Med. 2016;20:2078–88 doi: 10.1111/jcmm.12900
15. Bao Y, Zhao T, Wang X, Qiu Y, Su M, Jia W, Jia W. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res. 2009;8:1623–30. doi: 10.1021/pr800643w
16. Wiegers EC, Rooijackers HM, van Asten JJ, Tack CJ, Heerschap A, de Galan BE, van der Graa M. Elevated brain glutamate levels in type 1 diabetes: correlations with glycaemic control and age of disease onset but not with hypoglycaemia awareness status. Diabetologia. 2019;62(6):1065-73. doi: 10.1007/s00125-019-4862-9
17. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021;196:108719. doi: 10.1016/j.neuropharm.2021.108719
18. Rae CD. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res. 2014;39(1):1–36. doi: 10.1007/s11064-013-1199-5
19. Kruse AO, Bustillo JR. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry. 2022;12(1):500. doi: 10.1038/s41398-022-02253-w
20. Rorbach-Dolata A, Piwowar A. Neurometabolic Evidence Supporting the Hypothesis of Increased Incidence of Type 3 Diabetes Mellitus in the 21st Century. Biomed Res Int. 2019;2019:1435276. doi: 10.1155/2019/1435276
21. Davalli AM, Perego C, Folli FB. The potential role of glutamate in the current diabetes epidemic. Acta Diabetol. 2012;49(3):167–83. doi: 10.1007/s00592-011-0364-z
22. Sonnewald U. Glutamate synthesis has to be matched by its degradation – where do all the carbons go? J Neurochem. 2014;131:399–406. doi: 10.1111/jnc.12812
23. Conway ME. Alzheimer’s disease: targeting the glutamatergic system. Biogerontology. 2020;21(3):257–74. doi: 10.1007/s10522-020-09860-4
24. Huang XT, Li C, Peng XP, Guo J, Yue SJ, Liu W, Zhao FY, Han JZ, Huang YH, Li Y, Cheng QM, Zhou ZG, Chen C, Feng DD, Luo ZQ. An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep. 2017;7:44120. doi: 10.1038/srep44120
25. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121:799–817. doi: 10.1007/s00702-014-1180-8
26. Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. British Journal of Pharmacology. 2012;167(2):324–52. doi: 10.1111/j.1476-5381.2012.02057.x
27. Yin H, Wang W, Yu W, Li J, Feng N, Wang L, Wang X. Changes in Synaptic Plasticity and Glutamate Receptors in Type 2 Diabetic KK-Ay Mice. J Alzheimers Dis. 2017;57(4):1207–20. doi: 10.3233/JAD-160858
28. Mangia S, Giove F, Dinuzzo M. Metabolic pathways and activitydependent modulation of glutamate concentration in the human brain. Neurochem Res. 2012;37(11):2554–61. doi: 10.1007/s11064-012-0848-4
29. Han G, Takahashi H, Murao N, Gheni G, Yokoi N, Hamamoto Y, Asahara SI, Seino Y, Kido Y, Seino S. Glutamate is an essential mediator in glutamine-amplified insulin secretion. J Diabetes Investig. 2021;12(6):920–30. doi: 10.1111/jdi.13497
30. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv – European Journal of Physiology. 2010;460(2):525–42. doi: 10.1007/s00424-010-0809-1
31. Pose-Utrilla J, García-Guerra L, Del Puerto A, Martín A, Jurado-Arjona J, De León-Reyes NS, Gamir-Morralla A, Sebastián-Serrano A, García-Gallo M, Kremer L, Fielitz J, Ireson C, JPérez-Álvarez J, Ferrer I. Excitotoxic inactivation of constitutive oxidative stress detoxification pathway in neurons can be rescued by PKD1. Nat Commun. 2017;8(1):2275. doi: 10.1038/s41467-017-02322-5
32. Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci. 2015;9:469. doi: 10.3389/fnins.2015.00469
33. Villoslada P. Neuroprotective therapies for multiple sclerosis and other demyelinating diseases. Multiple Sclerosis and Demyelinating Disorders. 2016;1(1):16–20. doi: 10.1186/s40893-016-0004-0
34. Lau JC, Kroes RA, Moskal JR, Linsenmeier RA. Diabetes changes expression of genes related to glutamate neurotransmission and transport in the Long-Evans rat retina. Mol Vis. 2013;19:1538–53.
35. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150:633–46. doi: 10.1016/j.cell.2012.06.029
36. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica. 2009;30(4):379–87. doi: 10.1038/aps.2009.24
37. Burd I, Welling J, Kannan G, Johnston MV. Excitotoxicity as a Common Mechanism for Fetal Neuronal Injury with Hypoxia and Intrauterine Inflammation. Adv Pharmacol. 2016;76:85–101. doi: 10.1016/bs.apha.2016.02.003
38. Ola MS, Nawaz MI, Khan HA, Alhomida AS. Neurodegeneration and neuroprotection in diabetic retinopathy. Int J Mol Sci. 2013;14(2):2559–72. doi: 10.3390/ijms14022559
39. Joseph A, Antony S, Paulose CS. Increased glutamate receptor gene expression in the cerebral cortex of insulin induced hypoglycemic and streptozotocin-induced diabetic rats. Neuroscience. 2008;156(2):298–304. doi: 10.1016/j.neuroscience.2008.07.022
40. Soares E, Nunes S, Reis F, Pereira F. Diabetic encephalopathy: the role of oxidative stress and inflammation in type 2 diabetes. International Journal of Interferon. 2012;4(1):75–85. doi: 10.2147/IJICMR.S29322
41. Viswaprakash N, Vaithianathan T, Viswaprakash A, Judd R, Parameshwaran K, Suppiramaniam V. Insulin treatment restores glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function in the hippocampus of diabetic rats. J Neurosci Res. 2015;93(9):1442–50. doi: 10.1002/jnr.23589
42. van de Ven KC, Tack CJ, Heerschap A, van der Graaf M, de Galan BE. Patients with type 1 diabetes exhibit altered cerebral metabolism during hypoglycemia. J Clin Invest. 2013;123:623–9. doi: 10.1172/JCI62742
43. Wiegers EC, Rooijackers HM, Tack CJ, Philips BW, Heerschap A, van der Graaf M, de Galan BE. Effect of lactate administration on brain lactate levels during hypoglycemia in patients with type 1 diabetes. J Cereb Blood Flow Metab. 2019;39(10):1974–82. doi: 10.1177/0271678X18775884
44. Wiegers EC, Rooijackers HM, Tack CJ, Heerschap A, de Galan BE, van der Graaf M. Brain lactate concentration falls in response to hypoglycemia in patients with type 1 diabetes and impaired awareness of hypoglycemia. Diabetes. 2016;65(6):1601–5. doi: 10.2337/db16-0068
45. Bolo NR, Jacobson AM, Musen G, Keshavan MS, Simonson DC. Acute Hyperglycemia Increases Brain Pregenual Anterior Cingulate Cortex Glutamate Concentrations in Type 1 Diabetes. Diabetes. 2020;69(7):1528–39. doi: 10.2337/db19-0936
46. Bykov YuV, Baturin VA. Determination of levels of autoantibodies to neuroreceptors in children with type 1 diabetes mellitus. Pathological Physiology and Experimental Therapy. 2022;66(4):61–6 (In Russ.). doi: 10.25557/0031-2991.2022.04.61-66
47. Bykov YuV, Baturin VA, Volkov EV. The level of autoantibodies to dopamine and NMDA receptors in children depending on the severity of diabetic ketoacidosis. The Transbaikalian Medical Bulletin. 2022;3:18–26 (In Russ.). doi: 10.52485/19986173_2022_3_18
Review
For citations:
Bykov Yu.V., Baturin V.A. Glutamatergic system dysfunction in the pathophysiology of diabetic encephalopathy. Pacific Medical Journal. 2023;(3):15-19. (In Russ.) https://doi.org/10.34215/1609-1175-2023-3-15-19