Preview

Pacific Medical Journal

Advanced search

Morphogenetic and growth factors in damaging to the dentin-pulp complex and periodontium

https://doi.org/10.34215/1609-1175-2024-1-11-16

Abstract

Morphogenetic and growth molecules, a key participant in reparative dentinogenesis, determine viability of the dentin-pulp complex (DPC), periodontium and dentogingival junction. They are secreted in microvessels, nerve fibers and connective tissue cells of the dental pulp, exerting homeostatic influence on the immediate surrounding. The present paper reviews the data on the localization of growth factors and signaling mechanisms that control histogenesis and reparative processes in the DPC. The paper points out the significance of these factors in the regulation of proinflammatory and immunocompetent cells in caries, periodontitis and osteoinductive processes in the alveolar outgrowth. The study of growth molecules appears crucial in the development of the latest clinical strategies to maintain the viability of the DPC and to integrate artificial materials in dental tissue restoration.

About the Authors

S. S. Edranov
Pacific State Medical University
Russian Federation

Vladivostok



S. G. Kalinichenko
Pacific State Medical University
Russian Federation

Vladivostok



N. Yu. Matveeva
Pacific State Medical University
Russian Federation

Natalya Yu. Matveeva, Dr. Sci. (Med.), Head of the Department of Histology, Embryology and Cytology 

2 Ostryakova Ave, Vladivostok, 690002 



I. V. Kovaleva
Pacific State Medical University
Russian Federation

Vladivostok



References

1. Vavilova TP, Ostrovskaya IG. Biochemistry and physiology of dental pulp. M.: Media-Sfera, 2008. 136 p. (In Russ.)

2. Sirak SV, Sirak AG, Kopylova IA, Biragova AK. Study of morphological changes in the dental pulp of experimental animals during the treatment of deep caries and acute focal pulpitis. Medical News of the North Caucasus. 2011;23(3):29–33 (In Russ.)

3. Farges JC, Alliot-Licht B, Renard E, Ducret M, Gaudin A, Smith AJ, Cooper PR. Dental pulp defence and repair mechanisms in dental caries. Mediators Inflamm. 2015;2015:230251. doi: 10.1155/2015/230251

4. Goldberg M. The dental pulp. Biology, patology, and regenerative therapies. London: Springer; Hiedelberg; New York; Dordrecht, 2014. 277 p.

5. Freitas P, Novaretti CP, Rodini CO, Batista AC, Lara VS. Mast cells and lymphocyte subsets in pulps from healthy and carious human teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(5):e95–102. doi: 10.1016/j.tripleo.2006.11.031

6. Li J, Parada C, Chai Y. Cellular and molecular mechanisms of tooth root development. Development. 2017;144(3):374–84. doi: 10.1242/dev.137216

7. Emilia E, Neelakantan P. Biomarkers in the dentin-pulp complex: role in health and disease. J Clin Pediatr Dent. 2015;39(2):94–9. doi: 10.17796/jcpd.39.2.r32617516412p710

8. Zhao J, Birjandi AA, Ahmed M, Redhead Y, Olea JV, Sharpe P. Telocytes regulate macrophages in periodontal disease. Elife. 2022;11:e72128. doi: 10.7554/eLife.72128

9. Piglionico SS, Pons C, Romieu O, Cuisinier F, Levallois B, Panayotov IV. In vitro, ex vivo, and in vivo models for dental pulp regeneration. J Mater Sci Mater Med. 2023;34(4):15. doi: 10.1007/s10856-023-06718-2

10. Baysal E, Zırh EB, Buber E, Jakobsen TK, Zeybek ND. The effect of melatonin on Hippo signaling pathway in dental pulp stem cells. Neurochem Int. 2021;148:105079. doi: 10.1016/j.neuint.2021.105079

11. Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther. 2018;18(2):187–96. doi: 10.1080/14712598.2018.1402004

12. Hsu EL, Stock SR. Growth factors, carrier materials, and bone repair. Handb Exp Pharmacol. 2020;262:121–56. doi: 10.1007/164_2020_371

13. Kostiv RE, Kalinichenko SG, Matveeva NYu. Trophic factors of bone growth, their morphogenetic characterization and clinical significance. Pacific Medical Journal. 2017;(1):10–6 (In Russ.). doi: 10.17238/PmJ1609-1175.2017.1.10-16

14. Li W, Wei W, Ding S. TGF-β signaling in stem cell regulation. Methods Mol Biol. 2016;1344:137-45. doi: 10.1007/978-1-4939-2966-5_8

15. Kowalczewski CJ, Saul JM. Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Front Pharmacol. 2018;9:513. doi: 10.3389/fphar.2018.00513.eCollection2018

16. Raja S, Byakod G, Pudakalkatti P. Growth factors in periodontal regeneration. Int J Dent Hyg. 2009;7(2):82–9. doi: 10.1111/j.1601-5037.2009.00380.x

17. Chang HH, Chang MC, Wu IH, Huang GF, Huang WL, Wang YL, Lee SY, Yeh CY, Guo MK, Chan CP, Hsien HC, Jeng JH. Role of ALK5/Smad2/3 and MEK1/ERK signaling in transforming growth factor beta 1-modulated growth, collagen turnover, and differentiation of stem cells from apical papilla of human tooth. J Endod. 2015;41(8):1272–80. doi: 10.1016/j.joen.2015.03.022

18. Botero TM, Son JS, Vodopyanov D, Hasegawa M, Shelburne CE, Nör JE. MAPK signaling is required for LPS-induced VEGF in pulp stem cells. J Dent Res. 2010;89(3):264–9. doi: 10.1177/0022034509357556

19. Edranov SS, Matveeva NYu, Kalinichenko SG. On-bone fixation of free gingival graft causes osteoinductive effect in human alveolar bone. Cell Technologies in Biology and Medicine.2021;(3):201–7 (In Russ.) doi: 10.47056/1814-3490-2021-3-201-207

20. Al-Khafaji H, Noer PR, Alkharobi H, Alhodhodi A, Meade J, El-Gendy R, Oxvig C, Beattie J. A characteristic signature of insulin-like growth factor (IGF) axis expression during osteogenic differentiation of human dental pulp cells (hDPCs): Potential co-ordinated regulation of IGF action. Growth Horm IGF Res. 2018;42-43:14–21. doi: 10.1016/j.ghir.2018.07.003

21. Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH. Influence of TGF-beta1 on the expression of BSP, DSP, TGFbeta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol. 2008;39(2):153–60. doi: 10.1007/s10735-007-9148-8

22. Wang Y, Cox MK, Coricor G, MacDougall M, Serra R. Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev Biol. 2013;382:27–37. doi: 10.1016/j.ydbio.2013.08.003

23. Gao Y, Yang G, Weng T, Du J, Wang X, Zhou J, Wang S, Yang X. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol Cell Biol. 2009;29:5941–51. doi:10.1128/MCB.00706-09

24. Lapthanasupkul P, Feng J, Mantesso A, Takada-Horisawa Y, Vidal M, Koseki H, Wang L, An Z, Miletich I, Sharpe PT. Ring1a/b polycomb proteins regulate the mesenchymal stem cell niche in continuously growing incisors. Dev. Biol. 2012;367:140–53. doi: 10.1016/j.ydbio.2012.04.029

25. Sanz JL, Rodríguez-Lozano FJ, Llena C, Sauro S, Forner L. Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: a systematic review. Materials (Basel). 2019;12(7):1015. doi: 10.3390/ma12071015

26. Ivanov SYu, Karasenkov YaN, Latuta NV, Dzhatdaev VV, Egorov EA, Tarasova EK, Kozlova EV, Kozlov PA. Application of metal nanoparticles and their oxides in dental composite materials and structures: A review (part I). Clinical Dentistry. 2022;25(4):159–65 (In Russ.) doi: 10.37988/1811-153X_2022_4_159

27. Lutskaya IK, Chukhrai IG, Novak NV. Endodontics: a practical guide. Moscow, Medicinskaja Literatura, 2009. 191 p. (In Russ.)

28. Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratajczak J, Vangansewinkel T, Wolfs E, Bronckaers A, Hilkens P. Dental pulp stem cells: their potential in reinnervation and angiogenesis by using scaffolds. J Endod. 2017;43(9S):S12–S16. doi: 10.1016/j.joen.2017.06.001

29. Kostiv RE, Matveeva NYu, Kalinichenko SG. Bioactive coatings on metallic alloys and stimulation of bone repair after fracture. Pacific Medical Journal. 2021;(2):31–6 (In Russ.) doi: 10.34215/1609-1175-2021-2-31-36

30. Kalinichenko SG, Matveeva NYu, Kostiv RE, Puz’ AV. Role of Vascular Endothelial Growth Factor and Transforming Growth Factor-β2 in Rat Bone Tissue after Bone Fracture and Placement of Titanium Implants with Bioactive Bioresorbable Coatings. Bull Exp Biol Med. 2016;162(11):626–31 (In Russ.) doi: 10.1007/s10517-017-3684-3

31. Liu M, Goldman G, MacDougall M, Chen S. BMP signaling pathway in dentin development and diseases. Cells. 2022;11(14):2216. doi: 10.3390/cells11142216

32. Liang C, Liang Q, Xu X, Liu X, Gao X, Li M, Yang J, Xing X, Huang H, Tang Q, Liao L, Tian W. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci. 2022;14(1):38. doi: 10.1038/s41368-022-00188-y

33. Zhang Y, Liu J, Zou T, Qi Y, Yi B, Dissanayaka WL, Zhang C. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling. Stem Cell Res Ther. 2021;12(1):281. doi: 10.1186/s13287-021-02349-y

34. Rutherford RB. BMP-7 gene transfer to inflamed ferret dental pulps. Eur J Oral Sci. 2001;109(6):422–4. doi: 10.1034/j.1600-0722.2001.00150.x

35. Galler KM, D’Souza RN. Tissue engineering approaches for regenerative dentistry. Regen Med. 2011;6(1):111–24. doi: 10.2217/rme.10.86

36. Diana R, Ardhani R, Kristanti Y, Santosa P. Dental pulp stem cells response on the nanotopography of scaffold to regenerate dentin-pulp complex tissue. Regen Ther. 2020;15:243–50. doi: 10.1016/j.reth.2020.09.007

37. Steindorff MM, Lehl H, Winkel A, Stiesch M. Innovative approaches to regenerate teeth by tissue engineering. Arch Oral Biol. 2014;59(2):158–66. doi: 10.1016/j.archoralbio.2013.11.005

38. Pankratieva EP, Afanasenko VA, Kunavina KA, Gagarina TYu, Shilovskaya KA. Invasive cervical resorption as a complication of intracoronal bleaching. Medical Alphabet. 2022;(7):69–73 (In Russ.) doi: 10.33667/2078-5631-2022-7-69-73

39. Edranov SS, Matveeva NYu, Kalinichenko SG. Osteogenic and regenerative potential of the free gingival graft. Bull Exp Biol Med. 2021;171(3):391–6 (In Russ.) doi: 10.47056/0365-9615-2021-171-3-391-396


Review

For citations:


Edranov S.S., Kalinichenko S.G., Matveeva N.Yu., Kovaleva I.V. Morphogenetic and growth factors in damaging to the dentin-pulp complex and periodontium. Pacific Medical Journal. 2024;(1):11-16. (In Russ.) https://doi.org/10.34215/1609-1175-2024-1-11-16

Views: 361


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)