Preview

Pacific Medical Journal

Advanced search

Resistance of Enterococcus bacteria to disinfectants (literature review)

https://doi.org/10.34215/1609-1175-2025-1-22-26

Abstract

Enterococcus bacteria are opportunistic pathogens associated with a normal intestinal microflora in humans and animals and widely spread in the environment. This review aims to analyze the literature data on resistance of the genus Enterococcus to anti-infective agents and disinfectants. The dramatic increase in antibiotic-resistant bacteria drives the need for searching for new effective disinfectants and antibacterial substances to inhibit the proliferation and spread of pathogens in the environment. Therefore, it is necessary to study the resistance of Enterococcus bacteria not only to antibiotics but also to disinfectants.

About the Authors

A. V. Martynova
Pacific State Medical University of the Ministry of Health of Russia; Far Eastern Federal University
Russian Federation

Alina V. Martynova, Dr. Sci. (Med.), Professor of the Epidemiology Department, 2 Ostryakova Ave., Vladivostok, 690002;

Professor of the Department of Biodiversity and Marine Bioresources, 10, build. No 25, Ajax settlement, Russkiy Island, Vladivostok, 690950



C. S. Uskova
Far Eastern Federal University
Russian Federation

10, build. No 25, Ajax settlement, Russkiy Island, Vladivostok, 690950



References

1. Barbosa J, Borges S, Teixeira P. Selection of potential probiotic Enterococcus faecium isolated from Portuguese fermented food. International Journal of Food Microbiology. 2014; 191: 144–148. doi: 10.1016/j.ijfoodmicro.2014.09.009

2. Gordon S., Swenson J., Hill B. Antimicrobial susceptibility patterns of common and unusual species of enterococci causing infections in the United. States. J. Clin. Microbiol. 1992; 30(9): 2373–2378. doi: 10.1128/jcm.30.9.2373-2378.1992

3. Nishiyama M, Ogura Y, Hayashi T, Suzuki Y. Antibiotic resistance profiling and genotyping of vancomycin-resistant enterococci collected from an urban river basin in the Provincial City of Miyazaki, Japan. Water (Switzerland). 2017; 9(2): 1–17. doi: 10.3390/w9020079

4. Elizabeth F, Daria VT, Michael SG. Pathogenicity of Enterococci. Microbiol Spectr. 2019; 7(4): 1–23. doi: 10.1128/microbiolspec. GPP3-0053-2018

5. Sadowy E, Luczkiewicz A. Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC Microbiology. 2014; 14(66): 1–15.

6. Kim M, Weigand MR, Oh S. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl. Environ. Microbiol. 2018; 84: 7–19. doi: 10.1128/AEM.01201-18

7. Bai X, Ma X, Xu F, Li J, Zhang H, Xiao X. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Sci. Total Environ. 2015; 533: 24–31. doi: 10.1016/j.scitotenv.2015.06.082

8. Cloete TE. Resistance mechanisms of bacteria to antimicrobial compounds. Int. Biodeterior. Biodegrad. 2003; 51: 277–282. doi: 10.1016/S0964-8305(03)00042-8

9. Zhu Z, Shan L, Zhang X, Hu F, Zhong D, Yuan Y, Zhang J. Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere. 2020; 264: 1–12. doi: 10.1016/j.chemosphere.2020.128410

10. Tong C, Hu H, Chen G, Li Z, Li A, Zhang J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environmental Research. 2021; 195: 1–9. doi: 10.1016/j.envres.2021.110897

11. Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, Soe MM, Walters MS, Dudeck MA. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015-2017. Infect Control Hosp Epidemiol. 2020;41(1):1-18. doi: 10.1017/ice.2019.296

12. Zemlyanko OM, Rogoza TM, Zhuravleva GA. Mechanisms of mul tiple resistance of bacteria to antibiotics. Ecological Genetics. 2018; 16(3):4–17 (In Russ.). doi: 10.17816/ecogen1634-17

13. Egorov N. S. Fundamentals of the doctrine of antibiotics. M.: Iz-vo MGU Nauka. 2004; 580 (In Russ.).

14. Huys G, Haene KD, Collard J, Swings J. Prevalence and Molecular Characterization of Tetracycline Resistance in Enterococcus Isolates from Food. Applied and Environmental Microbiology. 2004; 70(4): 1555–1562. doi: 10.1128/AEM.70.3.1555-1562.2004

15. Raven KE, Reuter S, Gouliouris T, et. al. Genome-based characterization of hospital-adapted Enterococcus faecalis lineages. Nat Microbiol. 2016;1(3):1–7. doi: 10.1038/nmicrobiol.2015.33

16. Chow JW. Aminoglycoside Resistance in Enterococci. Clinical Infectious Diseases. 2000; 31(2) 586–589. doi: 10.1086/313949

17. Leclercq R, Dutka-Malen S, Brisson-Noël A, Molinas C, Derlot E, Arthur M, Courvalin P. Resistance of enterococci to aminoglycosides and glycopeptides. Clinical Infectious Diseases. 1992; 15(3): 495–501. doi: 10.1093/clind/15.3.495

18. Ounissi H, Derlot E, Carlier C, Courvalin P. Gene homogeneity for aminoglycoside-modifying enzymes in Gram-positive cocci. Antimicrob Agents Chemother. 1990; 34: 2164–2168. doi: 10.1128/AAC.34.11.2164

19. Aslangul E, Massias L, Meulemans A, Chau F, Andremont A, Courvalin P, Fantin B, Ruimy R. Acquired Gentamicin Resistance by Permeability Impairment in Enterococcus faecalis. Mechanisms of resistance. 2006; 50(11): 3615–-3621. doi: 10.1128/AAC.00390-06

20. Zou LK, Wang HN, Zeng B, Li JN, Li XT, Zhang AY, Xia QQ. Erythromycin resistance and virulence genes in Enterococcus faecalis from swine in China. New Microbiologica. 2011; 34(1): 73–80.

21. Pasquaroli S, Cesare AD, Vignaroli C, Conti G, Citterio B, Biavasco F. Erythromycin- and copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm(B) and tcrB to human Enterococcus faecalis. Diagnostic Microbiology and Infectious Disease. 2014; 80(1): 26–28. doi: 10.1016/j.diagmicrobio.2014.06.002

22. Rafailidis PI, Ioannidou EN, Falagas ME. Ampicillin/Sulbactam in Severe Bacterial Infections. Review Article. 2007; 67(13): 1829–1849.

23. Rice LB, Thomas RH, Lakticova V, Helfand MS, et. al. Betalactam antibiotics and gastrointestinal colonization with vancomycin-resistant enterococci. The Journal of Infectious Diseases. 2005; 24(12): 804–814. doi: 10.1086/382086

24. Marshall SH, Donskey CJ, Hutton-Thomas R, Salata RA, Rice LB. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrobial Agents and Chemotherapy. 2002; 46 (10): 3334–3336. doi: 10.1128/AAC.46.10.3334-3336.2002

25. Oyamada Y, Ito H, Fujimoto K, Asada R, Niga T, Okamoto R, Inoue M, Yamagishi JI. Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium. Journal of Medical Microbiology. 2006; 55(6): 729–736. doi: 10.1099/jmm.0.46303-0

26. Sedova MK. Development of the composition and methods of quality control of the solid dosage form of levofloxacin: Dis. Cand. Pharm. Sci.. Moscow. 2016; 167 (In Russ.).

27. Yasufuku T, Shigemura K, Shirakawa T, Matsumoto M, Nakano Y, et. al. Mechanisms of and Risk Factors for Fluoroquinolone Resistance in Clinical Enterococcus faecalis Isolates from Patients with Urinary Tract Infections. J Clin Microbiol. 2011; 49(11): 3912–3916. doi: 10.1128/JCM.05549-11

28. Rattanaumpawan P, Tolomeo P, Bilker WB, Fishman NO, Lautenbach E. Risk factors for fluoroquinolone resistance in Enterococcus urinary tract infections in hospitalized patients. Epidemiol. Infect. 2011; 139: 955–961. doi:10.1017/S095026881000186X

29. Enne VI, Delsol AA, Roe JM, Bennett PM. Rifampicin resistance and its fitness cost in Enterococcus faecium. Journal of Antimicrobial Chemotherapy. 2004; 53(2): 203–207. doi: 10.1093/jac/dkh044

30. Jolivet S, Fines-Guyon M, Nebbad B, Merle JC, Pluart DL, Brun-Buisson C, Cattoir V. First nosocomial outbreak of vanAtype vancomycin-resistant Enterococcus raffinosus in France. Journal of Hospital Infection. 2016; 94(4): 346–350. doi: 10.1016/j.jhin.2016.09.004

31. Bugg TDH, Wright GD, Walsh CT, Dutka-Malen S, Arthur M, Courvalin P. Molecular Basis for Vancomycin Resistance in Enterococcus faecium BM4147: Biosynthesis of a Depsipeptide Peptidoglycan Precursor by Vancomycin Resistance Proteins VanH and VanA. Biochemistry. 1991; 30(43): 10408–10415.

32. Monticelli J, Knezevich A, Luzzati R, Bella SD. Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. Journal of Infection and Chemotherapy. 2018; 24(4): 237–246. doi: 10.1016/j.jiac.2018.01.001

33. Cetinkaya Y, Fallk P, Mayhall C. Vancomycin-Resistant Enterococci. Clin. Microbiol. Rev. 2000; 13(4): 686–707. doi: 10.1128/CMR.13.4.686

34. Vergalli J, Bodrenko IV, Masi M, Moynie L, et. al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat. Rev. Microbiol. 2019; 18: 164– 176. doi: 10.1038/s41579-019-0294-2

35. Li L, Ye L, Kromann S, Meng H. Occurrence of extendedspectrum β-lactamases, plasmid-mediated quinolone resistance, and disinfectant resistance genes in Escherichia coli isolated from ready-to-eat meat products. Foodb. Pathog. Dis. 2016; 14: 109–115. doi: 10.1089/fpd.2016.2191

36. Lu J, Jin M, Nguyen SH, Mao L, Li J, Coin LJM, Yuan Z, Guo J. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environ. Int. 2018; 118: 257–265. doi: 10.1016/j.envint.2018.06.004

37. Chapman JS. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int. Biodeterior. Biodegrad. 2003; 51: 271–276. doi: 10.1016/S0964-8305(03)00044-1

38. Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005; 57: 1451–1470. doi: 10.1016/j.addr.2005.04.002

39. McDonnell G, Russell AD. Antiseptics, and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews. 1999; 12(1):147–179. doi: 10.1128/CMR.12.1.147

40. Ersoy ZG, Dinc O, Cinar B, Gedik ST, Dimoglo A. Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT. 2019; 102: 205–213. doi: 10.1016/j.lwt.2018.12.041

41. Jin M, Liu L, Wang DN, Yang D, Liu WL, Yin J, Yang ZW, Wang HR, Qiu ZG, Shen ZQ, Shi DY, Li HB, Guo JH, Li JW. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J. 2020 Jul;14(7):1847-1856. doi: 10.1038/s41396-020-0656-9.

42. Tezel U, Pavlostathis SG. Role of quaternary ammonium compounds on antimicrobial resistance in the environment. Antimicrobial Resistance in the Environment. 2012; 349–387. doi: 10.1002/9781118156247.ch20

43. Tezel U, Pavlostathis SG. Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Current Opinion in Biotechnology. 2015; Vol. 33: 296–304. doi: 10.1016/j.copbio.2015.03.018

44. Braga TM, Marujo PE, Pomba C, Lopes MFS. Involvement, and dissemination, of the enterococcal small multidrug resistance transporter QacZ in resistance to quaternary ammonium compounds. J Antimicrob Chemother. –2011; 66: 283–286. doi: 10.1093/jac/dkq460

45. Lim KS, P. C. A. Kam Chlorhexidine-pharmacology and clinical applications. Anaesth Intensive Care. 2008; 36: 502–512.

46. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005; 99: 703–715. doi: 10.1111/j.1365-2672.2005.02664.x

47. Prieto AMG, Wijngaarden J, Braat JC, Rogers MRC, Majoor E, et. al. The Two-Component System ChtRS Contributes to Chlorhexidine Tolerance in Enterococcus faecium. Antimicrob Agents Chemother. 2017; 61(5): 1–9. doi: 10.1128/AAC.02122-16


Review

For citations:


Martynova A.V., Uskova C.S. Resistance of Enterococcus bacteria to disinfectants (literature review). Pacific Medical Journal. 2025;(1):22-26. (In Russ.) https://doi.org/10.34215/1609-1175-2025-1-22-26

Views: 921


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)