Application of low-level lasers as excitation light sources for photodynamic therapy in the treatment of periodontitis
https://doi.org/10.34215/1609-1175-2025-2-33-39
Abstract
A modern comprehensive method for the treatment of periodontitis is the result of many years of laboratory and clinical research conducted in numerous countries worldwide. Until recently, its application was considered the only proven and reliable solution by treating physicians. However, the long-recognized problem of pathogenic microorganisms developing resistance to commonly used antibiotic drugs has reached truly alarming proportions over the past few years, deeply affecting many areas of medicine. This issue is especially reflected in the treatment of periodontitis, where the effective loss of key etiological therapy has significantly reduced the overall effectiveness of the treatment regimen, exacerbating previously compensated shortcomings and side effects. In this context, periodontists are compelled to seek new methods of antimicrobial and reparative therapy. In their search, attention is increasingly turning to the use of light-based physiotherapeutic treatment methods, whose therapeutic effects have long been noted but have not been adequately studied or clinically tested. The objective of this study is to examine the effects of using low-level lasers as excitation light sources in photodynamic therapy (PDT) for the treatment of patients with periodontitis. A special focus will be placed on studying the confirmed effects of light exposure from low-level lasers and the products of photochemical reactions on immune and connective tissue cells of the human body, as well as their significance in resolving pathological processes in the periodontium. The study also aims to highlight the advantages of combining this method with conventional comprehensive treatment approaches for periodontitis, addressing the shortcomings of the latter identified by modern medicine
About the Author
D. K. ShuleninRussian Federation
Dmitry K. Shulenin, the operator of the scientific company
Akademika Lebedeva str., St. Petersburg, 1940446
References
1. Ilyina SV. Irrational use of antibiotics in medicine. Pediatric Pharmacology. 2017; 14(6); 508–514 (In Russ.) doi: 10.15690/pf.v14i6.1834
2. Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral diseases. 2012;18(2);109–120. doi: 10.1111/j.1601-0825.2011.01851.x
3. Tamarova ER, Masagutova NR. Molecular and genetic characteristics of the microflora of the oral cavity in parodontitis. Bulletin of Chelyabinsk State University. 2013;7(298);70–71 (In Russ.)
4. Tsepov L.M., Nikolaev A.I., Nesterova M.M., Petrova E.V., Orekhova N.S., Scherbakova T.E., Levchenkova N.S. Should antibiotics be used in complex therapy of chronic inflammatory periodontal diseases? (literature review). Medical Newsletter of Vyatka. 2019; 2(62);93–98 (In Russ.)
5. Bulkina NV, Morgunova VM. Modern aspects of the etiology and pathogenesis of inflammatory periodontal diseases. Features of clinical manifestations of refractory periodontitis. Fundamental Research. 2012;2(2);416–420 (In Russ.)
6. Hosaka Y, Saito A, Maeda R, Fukaya C, Morikawa S, Makino A, Ishihara K, Nakagawa T. Antibacterial activity of povidone– iodine against an artificial biofilm of Porphyromonas gingivalis and Fusobacterium nucleatum. Arch Oral Biol. 2012;57(4);364– 368. doi: 10.1016/j.archoralbio.2011.09.005
7. Serino G, Rosling B, Ramberg P, Hellström MK, Socransky SS, Lindhe J. The effect of systemic antibiotics in the treatment of patients with recurrent periodontitis. J Clin Periodontol. 2001;28(5);411–418. doi: 10.1034/j.1600-051x.2001.028005411.x
8. Iwahara K, Kuriyama T, Shimura S, Williams DW, Yanagisawa M, Nakagawa K, Karasawa T. Detection of cfxA and cfxA2, the β-lactamase genes of Prevotella spp., in clinical samples from dentoalveolar infection by real-time PCR. J Clin Microbiol. 2006;44(1);172–176. doi: 10.1128/JCM.44.1.172-176.2006
9. Cobb CM, Sottosanti JS. A re-evaluation of scaling and root planning. J Periodontol. 2021;92(10);1370–1378. doi: 10.1002/JPER.20-0839
10. Giannelli M, Formigli L, Lorenzini L, Bani D. Combined photoablative and photodynamic diode laser therapy as an adjunct to non-surgical periodontal treatment: a randomized split– mouth clinical trial. J Clin Periodontol. 2012;39(10);962–970. doi: 10.1111/j.1600-051X.2012.01925.x
11. Ehmke B, Moter A, Beikler T, Milian E, Flemmig TF. Adjunctive antimicrobial therapy of periodontitis: long–term effects on disease progression and oral colonization. J Periodontol. 2005;76(5);749–759. doi: 10.1902/jop.2005.76.5.749
12. Tribble GD, Lamont RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontology. 2010;52(1);68–83. doi: 10.1111/j.1600-0757.2009.00323.x
13. Yakusheva LV. Hormone-dependent mechanisms of development of inflammatory-destructive processes in periodontal tissues. Acta Medica Eurasica. 2019;(2);29–43 (In Russ.)
14. Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol. 2018;9;1299. doi: 10.3389/fmicb.2018.01299
15. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106;1098–1107. doi: 10.1016/j.biopha.2018.07.049
16. Shui S, Zhao Z, Wang H, Conrad M, Liu G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021;45;102056. doi: 10.1016/j.redox.2021.102056
17. Javali MA, AlQahtani NA, Ahmad I, Ahmad I, Niger J. Antimicrobial photodynamic therapy (light source; methylene blue; titanium dioxide): bactericidal effects analysis on oral plaque bacteria: an in vitro study. Clin Pract. 2019;22(12);1654– 1661. doi: 10.4103/njcp.njcp_189_19
18. Park D, Kim M, Choi JW, Baek JH, Lee SH, Baek K. Antimicrobial photodynamic therapy efficacy against specific pathogenic periodontitis bacterial species. Photodiagnosis Photodyn Ther. 2020;30;101688. doi: 10.1016/j.pdpdt.2020.101688
19. Lu H, Luan X, Wu X, Meng L, Zhang X, Wang Y, Han Y, Wang X, Sun L, Bi L. Antimicrobial photodynamic therapeutic effects of cationic amino acid–porphyrin conjugate 4i on Porphyromonas gingivalis in vitro. Photodiagnosis Photodyn Ther. 2021;36;102539. doi: 10.1016/j.pdpdt.2021.102539
20. Oruba Z, Gawron K, Bereta GP, Sroka A, Potempa J, Chomyszyn-Gajewska M. Antimicrobial photodynamic therapy effectively reduces Porphyromonas gingivalis infection in gingival fibroblasts and keratinocytes: an in vitro study. Photodiagnosis Photodyn Ther. 2021;34;102330. doi: 10.1016/j.pdpdt.2021.102330
21. Etemadi A, Eftekhari Bayati S, Pourhajibagher M, Chiniforush N. In vitro effect of antimicrobial photodynamic therapy with phycocyanin on Aggregatibacter actinomycetemcomitans biofilm on SLA titanium discs. Photodiagnosis Photodyn Ther. 2020;32;102062. doi: 10.1016/j.pdpdt.2020.102062
22. Su CT, Chen CJ, Chen CM, Chen CC, Ma SH, Wu JH. Optical profile: a key determinant of antibacterial efficacy of photodynamic therapy in dentistry. Photodiagnosis Photodyn Ther. 2021;35;102461. doi: 10.1016/j.pdpdt.2021.102461
23. Mang T, Rogers S, Keinan D, Honma K, Baier R. Antimicrobial photodynamic therapy (aPDT) induction of biofilm matrix architectural and bioadhesive modifications. Photodiagnosis Photodyn Ther. 2016;13;22–28. doi: 10.1016/j.pdpdt.2015.11.007
24. Abuderman AWA, Muzaheed. Antibacterial effectiveness of scaling and root planing with and without photodynamic therapy against campylobacter rectus counts in the oral biofilm of patients with periodontitis. Photodiagnosis Photodyn Ther. 2021;33;102170. doi: 10.1016/j.pdpdt.2020.102170
25. Nie M, Deng DM, Wu Y, de Oliveira KT, Bagnato VS, Crielaard W, Rastelli ANS. Photodynamic inactivation mediated by methylene blue or chlorin e6 against Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther. 2020;31;101817. doi: 10.1016/j.pdpdt.2020.101817
26. Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers. 2021;13(14);3484–3549. doi: 10.3390/cancers13143484
27. Yoon I, Li JZ, Shim YK. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy. Clin Endosc. 2013;46(1);7– 23. doi: 10.5946/ce.2013.46.1.7
28. Muzaheed, Acharya S, Hakami AR, Allemailem KS, Alqahtani K, Al Saffan A, Aldakheel FM, Divakar DD. Effectiveness of single versus multiple sessions of photodynamic therapy as adjunct to scaling and root planing on periodontopathogenic bacteria in patients with periodontitis. Photodiagnosis Photodyn Ther. 2020;32;102035. doi: 10.1016/j.pdpdt.2020
29. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877;173090. doi: 10.1016/j.ejphar.2020.173090
30. Yusupova YI, Rumyantsev VA, Shimansky SH, Egorova EN, Budashova EI. Influence of macrophage reprogramming on morphological and functional changes in the periodontal tissue in chronic periodontitis. Medical Newsletter of Vyatka. 2018;58(2);76–80 (In Russ.)
31. Jiang C, Yang W, Wang C, Qin W, Ming J, Zhang M, Qian H, Jiao T. Methylene blue-mediated photodynamic therapy induces macrophage apoptosis via ROS and Reduces bone resorption in periodontitis. Oxid Med Cell Longev. 2019;1529520. doi: 10.1155/2019/1529520
32. Xie F, Yu HS, Wang R, Wang D, Li YM, Wen HY, Du JB, Ba W, Meng XF, Yang J, Lin BW, Li HJ, Li CX, Zhang LG, Fang XD, Zhao H. Photodynamic therapy for genital warts causes activation of local immunity. J Cutan Med Surg. 2019;23(4);370–379. doi: 10.1177/1203475419838548
33. Astuti SD, Utomo IB, Setiawatie EM, Khasanah M, Purnobasuki H, Arifianto D, Alamsyah KA. Combination effect of laser diode for photodynamic therapy with doxycycline on a wistar rat model of periodontitis. BMC Oral Health. 2021;21(1);80. doi: 10.1186/s12903-021-01435-0
34. Seguier S, Souza SL, Sverzut AC, Simioni AR, Primo FL, Bodineau A, Corrêa VM, Coulomb B, Tedesco AC. Impact of photodynamic therapy on inflammatory cells during human chronic periodontitis. J Photochem Photobiol B. 2010;101(3);348– 354. doi: 10.1016/j.jphotobiol.2010.08.007
35. Naruishi K, Nagata T. Biological effects of interleukin-6 on gingival fibroblasts: cytokine regulation in periodontitis. J Cell Physiol. 2018; 233(9);6393–6400. doi: 10.1002/jcp.26521
36. Asl RM, Ghoraeian P, Monzavi A, Bahador A. Analysis of gene expression of basic fibroblast growth factor (bFGF) following photodynamic therapy in human gingival fibroblasts. Photodiagnosis Photodyn Ther. 2017;20;144–147. doi: 10.1016/j.pdpdt.2017.09.010
37. Kushibiki T, Tu YP, Abu-Yousif AO, Hasan T. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation. Sci Rep. 2015;5;13114. doi: 10.1038/srep13114
38. Su X, Zhuang D, Zhang Y, Lv H, Wang Y, Luan X, Bi L. Influence of photodynamic therapy on the periodontitis-induced bone resorption in rat. Lasers Med Sci. 2021;36(3);675–680. doi: 10.1007/s10103-020-03126-8
39. Theodoro LH, Marcantonio RAC, Wainwright M, Garcia VG. LASER in periodontal treatment: is it an effective treatment or science fiction? Brazilian Oral Research. 2021;35(S2);e099. doi: 10.1590/1807–3107bor-2021.vol35.0099
40. Mokeem S. Efficacy of adjunctive low–level laser therapy in the treatment of aggressive periodontitis: A systematic review. J Investig Clin Dent. 2018;9(4);e12361. doi: 10.1111/jicd.12361
41. Garcia VG, Fernandes LA, de Almeida JM, Bosco AF, Nagata MJ, Martins TM, Okamoto T, Theodoro LH. Comparison between laser therapy and non-surgical therapy for periodontitis in rats treated with dexamethasone. Lasers Med Sci. 2010;25(2);197–206. doi: 10.1007/s10103–009–0678–z
42. Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem. 2003;278(42);40917–40922. doi: 10.1074/jbc.M303034200
43. Hamblin MR, Demidova TN. Mechanisms of low-level light therapy. Proc. of SPIE. 2006;6140);614001-614012. doi: 10.1117/12.646294
44. Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ. Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med. 2005;37(2);161–171. doi: 10.1002/lsm.20202
45. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, Yang M. cDNA Microarray Analysis of Gene Expression Profiles in Human Fibroblast Cells Irradiated with Red Light. Journal of Investigative Dermatology. 2003;120(5);849–857. doi: 10.1046/j.1523–1747.2003.12133.x
46. Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M. Effects of low-level He-Ne laser irradiation on the gene expression of IL-1β, TNF-α, IFN-γ, TGF-β, bFGF, and PDGF in rat's gingiva. Lasers Med Sci. 2008;23(3);331–335. doi: 10.1007/s10103-007-0491-5
47. Kharkar VV, Kolte AP, Kolte RA, Bawankar PV, Lathiya VN, Bodhare GH. Influence of adjunctive photodynamic therapy on Interleukin-6, Interleukin-8, and Interleukin-10 gingival Crevicular fluid levels in chronic periodontitis – a randomized controlled trial. Contemp Clin Dent. 2021;12(3);235–240. doi: 10.4103/ccd.ccd_510_20
48. Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis. 2010;15(9);1050–1071. doi: 10.1007/s10495-010-0479-7
49. Soundarajan S, Rajasekar A. Comparative evaluation of combined efficacy of methylene blue mediated antimicrobial photodynamic therapy (a-PDT) using 660 nm diode laser versus erbium-chromium-yttrium-scandium-gallium-garnet (Er, Cr: YSGG) laser as an adjunct to scaling and root planing on clinical parameters in supportive periodontal therapy: a randomized split–mouth trial. Photodiagnosis Photodyn Ther. 2022;39;102971. doi: 10.1016/j.pdpdt.2022.102971
50. Kuzin AA, Emelyanov VN, Gubanov AP. The use of a medical-economic approach in assessing the socioepidemiological significance of respiratory diseases. Epidemiology and Vaccinal Prevention. 2019;18(1);74–76 (In Russ.) doi: 10.31631/2073-3046-2019-18-1-74-76
Review
For citations:
Shulenin D.K. Application of low-level lasers as excitation light sources for photodynamic therapy in the treatment of periodontitis. Pacific Medical Journal. 2025;(2):33-39. (In Russ.) https://doi.org/10.34215/1609-1175-2025-2-33-39