Preview

Тихоокеанский медицинский журнал

Расширенный поиск

Нейрогенез у взрослых позвоночных животных: вопросы адаптации, эволюции и функциональной специализации

Аннотация

В обзоре сравниваются современные сведения о нейрогенезе в мозге млекопитающих и понимание этого процесса у рыб, рептилий, амфибий и птиц. В ходе изучения молекулярных и клеточных особенностей долгоживущих нейрональных клеток-предшественников, определенных для каждого класса, получены доказательства, что взрослые клетки-предшественники нейронов немлекопитающих позвоночных эквивалентны по своим свойствам стволовым клеткам млекопитающих. Эти наблюдения поднимают принципиальный вопрос о том, почему нейрогенез присутствует у одних видов животных и отсутствует у других. Дискуссия, посвященная данной теме, объединяет рассмотрение внутренних и внешних факторов, усиливающих или препятствующих пластичности мозга и того, каким образом она изменяется в течение жизни у разных видов животных.

Об авторах

Е. В. Пущина
Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук
Россия


Е. И. Жарикова
Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук
Россия


А. А. Вараксин
Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук
Россия


Список литературы

1. Мотавкин П.А., Бахтинов А.П. Интраспинальный орган человека // Архив анат. гистол. эмбриол. 1990. Т. 99, № 10. С. 5-19.

2. Abrous D.N., Koehl M., Le Moal M. Adult neurogenesis: from precursors to network and physiology // Physiol. Rev. 2005. Vol. 85. P. 523-569.

3. Abrous D.N., Koehl M., Le Moal M. Adult neurogenesis: from precursors to network and physiology // Physiol. Rev. 2005. Vol. 85. P. 523-569.

4. Absil P., Pinxten R., Balthazart J., Eens M. Effect of age and testosterone on autumnal neurogenesis in male European starlings (Sturnus vulgaris) // Behav. Brain Res. 2003. Vol. 143. P. 15-30.

5. Adolf B., Chapouton P., Lam C.S. [et al.]. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon // Dev. Biol. 2006. Vol. 295. P. 278-293.

6. Anthony T.E, Klein C., Fishell G., Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system // Neuron. 2004. Vol. 41. P. 881-890.

7. Berninger B., Hack M.A., Gotz M. Neural stem cells: on where they hide, in which disguise, and how we may lure them out // Handb. Exp. Pharmacol. 2006. Vol. 174. P. 319-360.

8. Brunne B., Zhao S., Derouiche A. [et al.]. Origin, maturation, and astroglial transformation of secondary radial glial cells in the developing dentate gyrus // Glia. 2010. Vol. 58. P. 1553-1569.

9. Candal E., Anadon R., DeGrip W.J., Rodriguez-Moldes I. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout // Brain Res. Dev. Brain Res. 2005. Vol. 154. P. 101-119.

10. Chapouton P., Adolf B., Leucht C. [et al.]. her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain // Development. 2006. Vol. 133. P. 4293-4303.

11. Chapouton P., Jagasia R., Bally-Cuif L. Adult neurogenesis in nonmammalian vertebrates // Bioessays. 2007. Vol. 29. P. 745-757.

12. Consiglio A., Gritti A., Dolcetta D. [et al.]. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. P. 14835-14840.

13. Coumailleau P., Pellegrini E., Adrio F. [et al.]. Aromatase, estrogen receptors and brain development in fish and amphibians // Biochim. Biophys. Acta. 2015. Vol. 1849. P. 152-162.

14. DeWulfV., Bottjer S.W. Age and sex differences in mitotic activity within the zebra finch telencephalon // J. Neurosci. 2002. Vol. 22. P. 4080-4094.

15. Diotel N., Vaillant C., Gueguen M.M. [et al.]. Cxcr4 and Cxcl12 expression in radial glial cells of the brain of adult zebrafish // J. Comp. Neurol. 2010. Vol. 518. P. 4855-4876.

16. Doetsch F., Caillé I., Lim D.A. [et al.]. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain // Cell. Vol. 1999. Vol. 97. P. 703-716.

17. Ekstrom P., Johnsson C.M., Ohlin L.M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones // J. Comp. Neurol. 2001. Vol. 436. P. 92-110.

18. Font E., Desfilis E., Perez-Canellas M.M., Garcia-Verdugo J.M. Neurogenesis and neuronal regeneration in the adult reptilian brain // Brain Behav. Evol. 2001. Vol. 58. P. 276-295.

19. Gage FH. Mammalian neural stem cells // Science. 2000. Vol. 287. P. 1433-1438.

20. Garcia A.D., Doan N.B., Imura T. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain // Nat. Neurosci. 2004. Vol. 7. P. 1233-1241.

21. Grandel H., Kaslin J., Ganz J. [et al.]. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate // Dev. Biol. 2006. Vol. 295. P. 263-277.

22. Gubert F., Zaverucha-do-Valle C., Pimentel-Coelho P.M. [et al.]. Radial glia-like cells persist in the adult rat brain // Brain Res. 2009. Vol. 1258. P. 43-52.

23. Hack M.A., Saghatelyan A., de Chevigny A. [et al.]. Neuronal fate determinants of adult olfactory bulb neurogenesis // Nat. Neurosci. 2005. Vol. 8. P. 865-872.

24. Hajihosseini M., Iavachev L., Price J. Evidence that retroviruses integrate into post-replication host DNA // EMBO J. 1993 Vol. 12. P. 4969-4974.

25. Hinsch K., Zupanc G.K. Isolation, cultivation, and differentiation of neural stem cells from adult fish brain // J. Neurosci. Meth. 2006. Vol. 158. P. 75-88.

26. Huttner W.B., Kosodo Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system // Curr. Opin. Cell Biol. 2005. Vol. 17. P. 648-657.

27. Ito Y., Tanaka H., Okamoto H., Ohshima T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum // Dev. Biol. 2010. Vol. 342. P. 26-38.

28. Kaslin J., Ganz J., Brand M. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008. Vol. 363. P. 101-122.

29. Kaslin J., Ganz J., Geffarth M. [et al.]. Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche // J. Neurosci. 2009. Vol. 29. P. 6142-6153.

30. Kempermann G. Adult neurogenesis: stem cells and neuronal development in the adult brain. New York: Oxford Univ. Press, Inc., 2006. 434 p.

31. Kippin T.E., Martens D.J., van der Kooy D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity // Genes Dev. 2005. Vol. P. 756-767.

32. Krogh K., Sorensen C., Nilsson G.E., 0verli 0. Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments // Physiol. Behav. 2010. Vol. 101. P. 32-39.

33. Lema S.C., Hodges M.J., Marchetti M.P, Nevitt G.A. Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate // Comp. Biochem. Physiol. 2005. Vol. 141A. P. 327-335.

34. Lie D.C., Colamarino S.A., Song H.J. [et al.]. Wnt signalling regulates adult hippocampal neurogenesis // Nature. 2005. Vol. 437. P. 1370-1375.

35. Lindsey B.W., Darabie A., Tropepe V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain // J. Comp. Neurol. 2012. Vol. 520. P. 2275-2316.

36. Lindsey B.W., Donato S., Kaslin J., Tropepe V. Sensory-specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain // Eur. J. Neurosci. 2014. Vol. 40. P. 3591-3607.

37. Luo J., Daniels S.B., Lennington J.B. [et al.]. The aging neurogenic subventricular zone // Aging Cell. 2006. Vol. 5. P 139-152

38. Marin O., Rubenstein J. Cell migration in the forebrain // Annu. Rev. Neurosci. 2003. Vol. 26. P 441-483.

39. Ming G.L., Song H. Adult neurogenesis in the mammalian central nervous system // Annu. Rev. Neurosci. 2005. Vol. 40. P. 223-250.

40. Morrison S.J., Wandycz A.M., Hemmati H.D. [et al.]. Identification of a lineage of multipotent hematopoietic progenitors // Development. 1997. Vol. 124. P. 1929-1939.

41. Morshead C.M., Benveniste P, Iscove N.N., van der Kooy D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations // Nat. Med. 2002. Vol. 8. P. 268-273.

42. Morshead C.M., Craig C.G., van der Kooy D. In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain // Development. 1998. Vol. 125. P. 2251-2261.

43. Morshead C.M., van der Kooy D. Disguising adult neural stem cells // Curr. Opin. Neurobiol. 2004. Vol. 14. P 125-131.

44. Motavkin P.A., Bactinov A.P Postnatal development of human spinal cord ependymal innervation // Neurosci. Behav. Physiol. 1973. Vol. 6. P. 253-259.

45. Pushchina E.V., Obukhov D.K., Varaksin A.A. Features of adult neurogenesis and neurochemical signaling in the dierry salmon Oncorhynchus masou brain // Neur. Regen. Res. 2013. Vol. 8. P. 13-23.

46. Pushchina E.V., Obukhov D.K., Varaksin A.A. Participation of catecholamines, H2S and NO in neurotransmission, neuromodulation and regulation of adult neurogenesis in carp brain // Carp and Catfish: Biology, Behavior and Conservation Strategies / Ed. B. Regan. New York: Nova Sci. Publishers, Inc., 2015. P. 135-191.

47. Pushchina E.V., Shukla S., Varaksin A.A. Hydrogen sulfide factor regulates differentiation and proliferation of nerve cells in primary culture of cells of brain and spinal cord of the salmonids // Nitric Oxide. 2014. Vol. 39. P. S34.

48. Pushchina E.V., Shukla S., Varaksin A.A., Obukhov D.K. Expression of neuronal marker HuCD in matrix areas in the brain of trout Oncorhynchus mykiss after mechanical injury of the optic nerve // Proc Joint Symp. 4th Intern. Neural Regen. Symp., 6th Intern. Spinal Cord Injury Treatments and Trials Symp. and 9th Asia Pacific Symp. Neural Regen. Nanjing, China. 2014. P. 75-76.

49. Pushchina E.V., Varaksin A.A., Obukhov D.K. Cystathionine ß-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae) // Neurochem. J. 2011. Vol. 5. P 24-34.

50. Riquelme PA., Drapeau E., Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain // Philos Trans. R. Soc. Lond. B. Biol. Sci. 2008. Vol. 363. P. 123-137.

51. Scharff C., Kirn J.R., Grossman M. [et al.]. Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds // Neuron. 2000. Vol. 25. P 481-492.

52. Seaberg R.M., van der Kooy D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors // J. Neurosci. 2002. Vol. 22. P. 1784-1793.

53. Seri B., Garcia-Verdugo J.M., Collado-Morente L. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus // J. Comp. Neurol. 2004.V. 478. P. 359-378.

54. Spassky N., Merkle F.T., Flames N. [et al.]. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis // J. Neurosci. 2005. Vol. 25. P. 10-18.

55. Sullivan S.A., Barthel L.K., Largent B.L., Raymond PA. A goldfish Notch-3 homologue is expressed in neurogenic regions of embryonic, adult, and regenerating brain and retina // Dev. Genet. 1997. Vol. 20. P 208-223.

56. Sundholm-Peters N.L., Yang H.K., Goings G.E. [et al.]. Radial glia-like cells at the base of the lateral ventricles in adult mice // J. Neurocytol. 2004. Vol. 33. P 153-164.

57. Takeuchi A., Okubo K. Post-proliferative immature radial glial cells female specifically express aromatase in the medaka optic tectum // PLoS ONE. 2013. Vol. 8. doi: 10.1371/journal. pone.0073663.

58. Tozzini E.T., Baumgart M., Battistoni G., Cellerino A. Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging // Aging Cell. 2012. Vol. 11. P. 241-251.

59. Zupanc G.K., Clint S.C. Potential role of radial glia in adult neurogenesis of teleost fish // Glia. 2003. Vol. 43. P. 77-86.

60. Zupanc G.K., Sîrbulescu R.F. Teleost fish as a model system to study successful regeneration of the central nervous system // Curr. Top. Microbiol. Immunol. 2013. Vol. 367. P. 193-233.

61. Zupanc G.K., Sîrbulescu R.F., Ilies I. Radial glia in the cerebellum of adult teleost fish: implications for the guidance of migrating new neurons // Neuroscience. 2012. Vol. 210. P 416-430.


Рецензия

Для цитирования:


Пущина Е.В., Жарикова Е.И., Вараксин А.А. Нейрогенез у взрослых позвоночных животных: вопросы адаптации, эволюции и функциональной специализации. Тихоокеанский медицинский журнал. 2016;(2):55-61.

For citation:


Puschina E.V., Zharikova E.I., Varaksin A.A. Neurogenesis in the adult vertebrate animals: the issues of adaptation, evolution and functional specialization. Pacific Medical Journal. 2016;(2):55-61. (In Russ.)

Просмотров: 280


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)