Нейроны пластинки Х спинного мозга
Аннотация
Об авторах
В. В. ПорсеваРоссия
В. В. Шилкин
Россия
Список литературы
1. Матвеева Н.Ю., Калиниченко С.Г., Пущин И.И., Мотавкин П.А. Роль оксида азота в апоптозе нейронов сетчатки глаза плодов человека // Морфология. 2006. Т. 129, № 1. С. 42-48.
2. Мотавкин П.А., Черток В.М. Иннервация мозга // Тихоокеанский медицинский журнал. 2008. № 3. С. 11-23.
3. Пивченко П.Г. Структурная организация серого вещества спинного мозга человека и млекопитающих животных: автореф. дис.. д-ра мед. наук. Харьков, 1993. 38 с.
4. Порсева В.В. Возрастные преобразования ядер спинного мозга и спинномозговых ганглиев в норме и в условиях химической деафферентации: автореф. дис.. канд. мед. наук. Ярославль, 2006. 19 с.
5. Порсева В.В. Кальбиндин-иммунореактивные интернейроны промежуточной области и вентрального рога серого вещества спинного мозга белой крысы // Морфология. 2014. T 146, № 6. C. 21-26.
6. Порсева В.В., Шилкин В.В. NADPH-диафоразо-позитивные структуры спинного мозга и спинномозговых узлов // Морфология, 2010. Т. 137, № 2. С. 13-17.
7. Порсева В.В., Шилкин В.В., Стрелков А.А. [и др.]. Субпопуляции кальбиндин-иммунореактивных интернейронов дорсального рога спинного мозга мышей // Цитология. 2014. Т. 56, № 8. С. 612-618.
8. Черток В.М., Коцюба А.Е. Распределние NADPH-диафоразы и нейрональной NO-синтазы в ядрах продолговатого мозга // Морфология. 2013. Т. 144, № 6. С. 9-14.
9. Anelli R., Heckman C.J. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord // J. Neurocytology. 2005. Vol. 34, No. 6. P. 369-385.
10. Antal M., Freund T.F., Polgar E. Calcium-binding proteins, parvalbuminand calbindin-D28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study // J. Comp. Neurol. 1990. Vol. 295, No. 3. P. 467-484.
11. Banik, N.L., Matzelle, D.C., Gantt-Wilford G. [et al.]. Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury // Brain Res. 1997. Vol. 752, No. 1-2. P. 301-306.
12. Barber R. P., Phelps P. E., Houser C. R. [et al.]. The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study // J. Comp. Neurol. 1984. Vol. 229. P. 329-346.
13. Barber R.P., Vaughn J.E., Roberts E. The cytoarchitecture of GABAergic neurons in rat spinal cord // Brain Res. 1982. Vol. 238. P. 305-328.
14. Caillard O., Moreno H., Schwaller B. [et al.]. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97, No. 24. P. 1337213377.
15. Calka J., Zalecki M., Wasowicz K. [et al.]. A comparison of the distribution and morphology of ChAT-, VAChT-immunoreactive and AChE-positive neurons in the thoracolumbar and sacral spinal cord of the pig // Veterinarni Medicina. 2008. Vol. 53, No. 8. P. 434-444.
16. Deuchars S. A., Milligan C. J., Stornetta R. L. [et al.]. GABAergic neurons in the central region of the spinal cord: a novel substrate for sympathetic inhibition // Neurosci. 2005. Vol. 25, No. 5. P. 1063-1070.
17. Fahandejsaadi A., Leung E., Rahaii R. [et al.]. Calbindin-D28K, parvalbumin and calretinin in primate lower motor neurons // Neuroreport. 2004. Vol. 15, No. 3. P. 443-448.
18. Freire M.A^., Tourinho S.C., Guimarâes J.S. [et al.]. Histo-chemical characterization, distribution and morphometric analysis of NADPH diaphorase neurons in the spinal cord of the agouti // Front. Neuroanat. 2008. Vol. 2. doi: 10.3389/ neuro.05.002.2008.
19. Gookin J.L., Rhoads J.M., Argenzio R.A. Inducible nitric oxide synthase mediates early epithelial repair of porcine ileum // Am. J. Physiol. Gastrointest. Liver Physiol. 2002. Vol. 283, No. 1. P. 157-168.
20. Gotts J., Edwards I., Deuchars S.A., Deuchars J. Co-localisation of the enzymes synthesising GABA and acetylcholine in the mouse spinal cord // Proc. Physiol. Soc. 31. 2014. PCA047.
21. Grant G., Koerber H.R. Spinal cord cytoarchitecture // The Rat Nervous System. 2004. Vol. 3. P. 121-128.
22. Jankowska E., Bannatyne B.A., Stecina K. [et al.]. Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells // J. Physiol. 2009. Vol. 587, No. 2. P. 401-418.
23. Kim J.J., Chang I.Y., Chung Y.Y. [et al.]. Immunohistochemi-cal studies on the calbindin D-28K and parvalbumin positive neurons in the brain stem and spinal cord after transection of spinal cord of rats // Korean J. Phys. Anthropol. 2002. Vol. 15, No. 4. P. 305-329.
24. Lee J.C., Hwang I.K., Cho J.H. [et al.]. Expression and changes of calbindin D-28k immunoreactivity in the ventral horn after transient spinal cord ischemia in rabbits // Neurosci Lett. 2004. Vol. 369, No. 2. P. 145-149.
25. Marsala J., Vanicky I., Marsala M. [et al.]. Reduced nicotinamide adenine dinucleotide phosphate diaphorase in the spinal cord of dogs // Neurosci. 1998. Vol. 85, No. 3. P. 847-862.
26. Megias M., Alvarez-Otero R., Pombal M.A. Calbindin and calretinin immunoreactivities identify different types of neurons in the adult lamprey spinal cord // J. Comp. Neurol. 2003. Vol. 455, No. 1. P. 72-85.
27. Morona R., Lopez J.M., Gonzalez A. Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase // Brain Res. Bull. 2006. Vol. 69, No. 5. P. 519-534.
28. Motavkin P.A., Bakhtinov A.P. Postnatal development of human spinal cord ependymal innervation // Neuroscience and Behavioral Physiology. 1973. Vol. 6, No. 3. Р. 253-259.
29. Motavkin P.A., Dovbysh T.V. Cholinergic nervous apparatus of pia mater and brain blood vessels // Bull. Exp. Biol, Med. 1970. Vol. 70, No. 7. Р. 113-116.
30. Nagy J.I., Yamamoto T., Jordan L.M. Evidence for the cholinergic nature of C-terminals associated with subsurface cisterns in a-motoneurons of rat // Synapse. 1993. Vol. 15, No. 1. Р. 17-32.
31. Nahin R.L., Madsen A.M., Giesler G J. Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal // Journal Comp. Neurol. 1983. Vol. 220. P. 321-335.
32. Polgar E., Sardella T.C., Tiong S.Y. [et al.]. Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn // Pain. 2013. Vol. 154, No. 12. P. 2606-2615.
33. Porseva V.V. Topography and morphometric characteristics of NF200+ neurons in the gray matter of the spinal cord after capsaicin deafferentation // Neurosci. and Behav. Physiol. 2014. Vol. 44, No. 8. P. 919-923.
34. Schoenen J., Faull R.L.M. Spinal cord: cyto- and chemoarchitecture // The Human Nervous System. 2004. Vol. 2. P. 190-232.
35. Stepien A.E., Tripodi M., Arber S. Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells // Neuron. 2010. Vol. 68. P. 456-472.
36. Todd A.J. Neuronal circuitry for pain processing in the dorsal horn // Nature Reviews. 2010. Vol. 11. P. 823-836.
37. van Dijken H., Dijk J., Voorn P., Holstege J.C. Localization of dopamine D2 receptor in rat spinal cord identified with immunocytochemistry and in situ hybridization // Eur. J. of Neurosci. 1996. Vol. 8. P. 621-628.
38. Zagoraiou L., Akay T., Martin J.F. [et al.]. A cluster of cholinergic premotor interneurons modulates mouse locomotor activity // Neuron. 2009. Vol. 64. P. 645-662.
Рецензия
Для цитирования:
Порсева В.В., Шилкин В.В. Нейроны пластинки Х спинного мозга. Тихоокеанский медицинский журнал. 2016;61(4):5-10. https://doi.org/10.17238/PmJ1609-1175.2016.4.5-10
For citation:
Porseva V.V., Shilkin V.V. Neurons of spinal lamella X. Pacific Medical Journal. 2016;61(4):5-10. (In Russ.) https://doi.org/10.17238/PmJ1609-1175.2016.4.5-10