Биосовместимые деградируемые материалы на основе пектинов для тканевой инженерии: местная реакция тканей при подкожной имплантации
Аннотация
Об авторах
А. В. ЩеблыкинаРоссия
П. В. Мищенко
Россия
В. В. Кумейко
Россия
Список литературы
1. Хотимченко Ю.С., Щеблыкина А.В., Кумейко В.В. Биосовместимые матриксные имплантаты на основе природных и синтетических полимеров как перспективные средства для терапии дегенеративных и посттравматических заболеваний центральной нервной системы // Тихоокеанский медицинский журнал. 2012. № 2. С. 92-98.
2. Chen Y.G., Lee M.W., Tu Y.H. et al. Surface coupling of long-chain hyaluronan to the fibrils of reconstituted type II collagen // Artificial Cells, Blood Substitutes and Biotechnology. 2009. Vol. 37. P. 222-226.
3. Gupta D., Tator C., Shoichet M. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord // Biomaterials. 2006. Vol. 27. P. 2370-2379.
4. Hahn S.K., Park J.K., Tomimatsu T., Shimoboji T. Synthesis and degradation test of hyaluronic acid hydrogels // International Journal of Biological Macromolecules. Vol. 40. 2007. P 374-380.
5. Han H.D., Nam D.E., Seo D.H. et al. Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature // Macromolecular Research. 2004. Vol. 12, No. 5. P. 507-511.
6. Hill C., Beattie M., Bresnahan J. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat // Exp. Neurol. 2001. Vol. 171. P 153-169.
7. Liu L.S., Won Y.J., Cooke PH. et al. Pectin/poly(lactide-coglycolide) composite matrices for biomedical applications // Biomaterials. 2004. Vol. 25. P. 3201-3210.
8. Marchand R., Woerly S. Transected spinal cords grafted with in situ self-assembled collagen matrices // Neuroscience. 1990. Vol. 36. №1. P. 45-60.
9. McPherson J.M., Sawamura S., Armstrong R. An examination of the biologic response to injectable, glutaraldehyde cross-linked collagen implants // J. Biomed. Mat. Res. 1986. Vol. 20, №1. P. 93-107.
10. Munarin F., Guerreiro S.G., Grellier M.A. et al. Pectin-based injectable biomaterials for bone tissue engineering // Biomacromolecules. 2011.
11. Munarin F., Tanzi M.C., Petrini P. Advances in biomedical applications of pectin gels // International Journal of Biological Macromolecules. 2012. Vol. 51. P 681-689.
12. Perris R., Syfrig J., Paulsson M., Bronnerfraser M. Molecular mechanisms of neural crest cell attachment and migration on type-I and type-IV collagen // Journal of Cell Science. 1993. Vol. 106. P. 1357-1368.
13. Price PJ. Preparation and use of rat tail collagen // Methods in cell science. 1975. Vol. 1, No. 1. P. 43-44.
14. Straley K.S., Foo C.W.P., Heilshorn S.C. Biomaterial design strategies for the treatment of spinal cord injuries // Journal of neurotrauma. 2010. Vol. 27. P. 1-19.
15. Surazynski A., Miltyk W., Czarnomysy R. et al. Hyaluronic acid abrogates nitric oxide-dependent stimulation of collagen degradation in cultured human chondrocytes // Pharmacological Research. 2009. Vol. 60. P. 46-49.
Рецензия
Для цитирования:
Щеблыкина А.В., Мищенко П.В., Кумейко В.В. Биосовместимые деградируемые материалы на основе пектинов для тканевой инженерии: местная реакция тканей при подкожной имплантации. Тихоокеанский медицинский журнал. 2013;(2):13-17.
For citation:
Shcheblykina A.V., Mishchenko P.V., Kumeiko V.V. PECTIN-BASED BIOCOMPATIBLE DEGRADABLE MATERIALS FOR TISSUE ENGINEERING: LOCAL TISSUE REACTION AFTER SUBCUTANEOUS IMPLANTATION. Pacific Medical Journal. 2013;(2):13-17. (In Russ.)