Preview

Pacific Medical Journal

Advanced search

PECTIN-BASED BIOCOMPATIBLE DEGRADABLE MATERIALS FOR TISSUE ENGINEERING: LOCAL TISSUE REACTION AFTER SUBCUTANEOUS IMPLANTATION

Abstract

The paper presents the results of histological evaluation of local tissue reaction after subcutaneous implantation of biopolymer matrix materials made of modified pectin and collagens of various types. No acute inflammation or rejection were produced. Loose fibrous capsule was formed around the implants. The capsule decreased and disappeared three months after polysaccharide matrix implantation. Cells and blood vessels infiltrated the implants. Matrix slowly degraded. Composite matrix made of citrus modified pectin (with the degree of esterification 30 %), collagen I and NC1-hexamer of collagen IV was partially preserved three months after the subcutaneous implantation while collagen sponge was fully resorbed during one month. The data lay the foundation for the elaboration of new slowly degradable biomaterials for tissue engineering.

About the Authors

A. V. Shcheblykina
A.V. Zhirmunsky Institute of Marine Biology; Far Eastern Federal University
Russian Federation


P. V. Mishchenko
A.V. Zhirmunsky Institute of Marine Biology; Far Eastern Federal University
Russian Federation


V. V. Kumeiko
A.V. Zhirmunsky Institute of Marine Biology; Far Eastern Federal University
Russian Federation


References

1. Хотимченко Ю.С., Щеблыкина А.В., Кумейко В.В. Биосовместимые матриксные имплантаты на основе природных и синтетических полимеров как перспективные средства для терапии дегенеративных и посттравматических заболеваний центральной нервной системы // Тихоокеанский медицинский журнал. 2012. № 2. С. 92-98.

2. Chen Y.G., Lee M.W., Tu Y.H. et al. Surface coupling of long-chain hyaluronan to the fibrils of reconstituted type II collagen // Artificial Cells, Blood Substitutes and Biotechnology. 2009. Vol. 37. P. 222-226.

3. Gupta D., Tator C., Shoichet M. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord // Biomaterials. 2006. Vol. 27. P. 2370-2379.

4. Hahn S.K., Park J.K., Tomimatsu T., Shimoboji T. Synthesis and degradation test of hyaluronic acid hydrogels // International Journal of Biological Macromolecules. Vol. 40. 2007. P 374-380.

5. Han H.D., Nam D.E., Seo D.H. et al. Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature // Macromolecular Research. 2004. Vol. 12, No. 5. P. 507-511.

6. Hill C., Beattie M., Bresnahan J. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat // Exp. Neurol. 2001. Vol. 171. P 153-169.

7. Liu L.S., Won Y.J., Cooke PH. et al. Pectin/poly(lactide-coglycolide) composite matrices for biomedical applications // Biomaterials. 2004. Vol. 25. P. 3201-3210.

8. Marchand R., Woerly S. Transected spinal cords grafted with in situ self-assembled collagen matrices // Neuroscience. 1990. Vol. 36. №1. P. 45-60.

9. McPherson J.M., Sawamura S., Armstrong R. An examination of the biologic response to injectable, glutaraldehyde cross-linked collagen implants // J. Biomed. Mat. Res. 1986. Vol. 20, №1. P. 93-107.

10. Munarin F., Guerreiro S.G., Grellier M.A. et al. Pectin-based injectable biomaterials for bone tissue engineering // Biomacromolecules. 2011.

11. Munarin F., Tanzi M.C., Petrini P. Advances in biomedical applications of pectin gels // International Journal of Biological Macromolecules. 2012. Vol. 51. P 681-689.

12. Perris R., Syfrig J., Paulsson M., Bronnerfraser M. Molecular mechanisms of neural crest cell attachment and migration on type-I and type-IV collagen // Journal of Cell Science. 1993. Vol. 106. P. 1357-1368.

13. Price PJ. Preparation and use of rat tail collagen // Methods in cell science. 1975. Vol. 1, No. 1. P. 43-44.

14. Straley K.S., Foo C.W.P., Heilshorn S.C. Biomaterial design strategies for the treatment of spinal cord injuries // Journal of neurotrauma. 2010. Vol. 27. P. 1-19.

15. Surazynski A., Miltyk W., Czarnomysy R. et al. Hyaluronic acid abrogates nitric oxide-dependent stimulation of collagen degradation in cultured human chondrocytes // Pharmacological Research. 2009. Vol. 60. P. 46-49.


Review

For citations:


Shcheblykina A.V., Mishchenko P.V., Kumeiko V.V. PECTIN-BASED BIOCOMPATIBLE DEGRADABLE MATERIALS FOR TISSUE ENGINEERING: LOCAL TISSUE REACTION AFTER SUBCUTANEOUS IMPLANTATION. Pacific Medical Journal. 2013;(2):13-17. (In Russ.)

Views: 250


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-1175 (Print)