Pharmacological targets of glioblastoma stem cells
https://doi.org/10.34215/1609-1175-2025-2-50-54
Abstract
Objective. To identify pharmacological targets to enhance the effectiveness of chemoradiotherapy. Materials and methods. A highly sensitive transcriptomic analysis using high-density microarrays, routine cell technologies, and advanced bioinformatic analysis were employed. Results. A total of 677 genes were identified in CD133+ glioblastoma stem cells (GSCs) with expression levels increased by two-fold or more compared to differentiated glioblastoma cells (DGCs). Among them, 13 transcripts demonstrated a critically elevated expression in GSCs (more than 4-fold), including: akt1, hdac1, cnnb1, ahnak2, daam, pik3cg, mctp1, Il31ra, ca9, csnk2b, col6a1, col6a3 and lambd1. Conclusion. The primary pharmacological targets in glioblastoma stem cells (GSCs) are the proteins AKT1, HDAC1, and CTNNB1 – the products of the akt1, hdac1, and ctnnb1 genes. Secondary targets include the protein products of the ahnak2, daam, pik3cg, mctp1, il31ra, ca9, csnk2b, col6a1, col6a3, and lambd1 genes
About the Authors
S. V. ZaitsevRussian Federation
Sergey V. Zaitsev, Cand. Sci. (Biol.), Head of the Laboratory, Department of Pharmacy and Pharmacology, School of Medicine and Life Sciences
10 Ajax Bay, Russky Island, Vladivostok, 690922
E. S. Pugacheva
Russian Federation
10 Ajax Bay, Russky Island, Vladivostok, 690922
A. A. Kos'yanova
Russian Federation
10 Ajax Bay, Russky Island, Vladivostok, 690922
O. I. Pak
Russian Federation
10 Ajax Bay, Russky Island, Vladivostok, 690922
I. S. Bryukhovetskiy
Russian Federation
10 Ajax Bay, Russky Island, Vladivostok, 690922
References
1. Schaff LR, Mellinghoff IK. Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. JAMA. 2023 Feb 21;329(7):574–587. doi: 10.1001/jama.2023.0023
2. Sloan AR, Silver DJ, Kint S, Gallo M, Lathia JD. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro Oncol. 2024 May 3;26(5):785–795. doi: 10.1093/neuonc/noae011
3. Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro Oncol. 2022 May 4;24(5):669–682. doi: 10.1093/neuonc/noab269
4. Kim KH, Migliozzi S, Koo H, Hong JH, Park SM, Kim S, Kwon HJ, Ha S, Garofano L, Oh YT, D'Angelo F, Kim CI, Kim S, Lee JY, Kim J, Hong J, Jang EH, Mathon B, Di Stefano AL, Bielle F, Laurenge A, Nesvizhskii AI, Hur EM, Yin J, Shi B, Kim Y, Moon KS, Kwon JT, Lee SH, Lee SH, Gwak HS, Lasorella A, Yoo H, Sanson M, Sa JK, Park CK, Nam DH, Iavarone A, Park JB. Integrated proteogenomic characterization of glioblastoma evolution. Cancer Cell. 2024 Mar 11;42(3):358–377.e8. doi: 10.1016/j.ccell.2023.12.015
5. Bryukhovetskiy I. Cell-based immunotherapy of glioblastoma multiforme. Oncol Lett. 2022 Apr;23(4):133. doi: 10.3892/ol.2022.13253
6. Srivastava R, Dodda M, Zou H, Li X, Hu B. Tumor Niches: Perspectives for Targeted Therapies in Glioblastoma. Antioxid Redox Signal. 2023 Nov;39(13–15):904–922. doi: 10.1089/ars.2022.0187
7. Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci. 2022 Jan 25;23(3):1353. doi: 10.3390/ijms23031353
8. Manoranjan B, Chokshi C, Venugopal C, Subapanditha M, Savage N, Tatari N, Provias JP, Murty NK, Moffat J, Doble BW, Singh SK. A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells. Oncogene. 2020 Feb;39(7):1590– 1599. doi: 10.1038/s41388-019-1086-x
9. Jung KH, Lee JH, Kim M, Lee EJ, Cho YS, Lee KH. Celecoxib- Induced Modulation of Colon Cancer CD133 Expression Occurs through AKT Inhibition and Is Monitored by 89Zr Immuno-PET. Mol Imaging. 2022 Jan 7;2022:4906934. doi: 10.1155/2022/4906934
10. Liu DX, Hao SL, Yang WX. Crosstalk Between beta-CATENINMediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol. 2023 Jan;42(1):1–13. doi: 10.1089/dna.2022.0424
11. Gopinathan A, Sankhe R, Rathi E, Kodi T, Upadhya R, Pai KSR, Kishore A. An in silico drug repurposing approach to identify HDAC1 inhibitors against glioblastoma. J Biomol Struct Dyn. 2024 Apr 30:1–14. doi: 10.1080/07391102.2024.2335293
12. Zhang BT, Leung PC, Wong CK, Wang DJ. The Immunomodulatory Effects of Vitamin D on COVID-19 Induced Glioblastoma Recurrence via the PI3K-AKT Signaling Pathway. Int J Mol Sci. 2024 Dec 2;25(23):12952. doi: 10.3390ijms252312952
13. Hashemi M, Etemad S, Rezaei S, Ziaolhagh S, Rajabi R, Rahmanian P, Abdi S, Koohpar ZK, Rafiei R, Raei B, Ahmadi F, Salimimoghadam S, Aref AR, Zandieh MA, Entezari M, Taheriazam A, Hushmandi K. Progress in targeting PTENPI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother. 2023 Feb;158:114204. doi: 10.1016/j.biopha.2022.114204
14. Zhang C, Wang M, Ji F, Peng Y, Wang B, Zhao J, Wu J, Zhao H. A Novel Glucose Metabolism-Related Gene Signature for Overall Survival Prediction in Patients with Glioblastoma. Biomed Res Int. 2021 Jan 22;2021:8872977. doi: 10.1155/2021/8872977
15. Latour M, Her NG, Kesari S, Nurmemmedov E. WNT Signaling as a Therapeutic Target for Glioblastoma. Int J Mol Sci. 2021 Aug 5;22(16):8428. doi: 10.3390/ijms22168428
Review
For citations:
Zaitsev S.V., Pugacheva E.S., Kos'yanova A.A., Pak O.I., Bryukhovetskiy I.S. Pharmacological targets of glioblastoma stem cells. Pacific Medical Journal. 2025;(2):50-54. (In Russ.) https://doi.org/10.34215/1609-1175-2025-2-50-54